Changing the index type of a matrix #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file concerns the map matrix.reindex
, mapping a m
by n
matrix
to an m'
by n'
matrix, as long as m ≃ m'
and n ≃ n'
.
Main definitions #
matrix.reindex_linear_equiv R A
:matrix.reindex
is anR
-linear equivalence betweenA
-matrices.matrix.reindex_alg_equiv R
:matrix.reindex
is anR
-algebra equivalence betweenR
-matrices.
Tags #
matrix, reindex
The natural map that reindexes a matrix's rows and columns with equivalent types,
matrix.reindex
, is a linear equivalence.
Equations
- matrix.reindex_linear_equiv R A eₘ eₙ = {to_fun := (matrix.reindex eₘ eₙ).to_fun, map_add' := _, map_smul' := _, inv_fun := (matrix.reindex eₘ eₙ).inv_fun, left_inv := _, right_inv := _}
For square matrices with coefficients in commutative semirings, the natural map that reindexes
a matrix's rows and columns with equivalent types, matrix.reindex
, is an equivalence of algebras.
Equations
- matrix.reindex_alg_equiv R e = {to_fun := ⇑(matrix.reindex e e), inv_fun := (matrix.reindex_linear_equiv R R e e).inv_fun, left_inv := _, right_inv := _, map_mul' := _, map_add' := _, commutes' := _}
Reindexing both indices along the same equivalence preserves the determinant.
For the simp
version of this lemma, see det_submatrix_equiv_self
.
Reindexing both indices along the same equivalence preserves the determinant.
For the simp
version of this lemma, see det_submatrix_equiv_self
.