IMO 1981 Q3 #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Determine the maximum value of m ^ 2 + n ^ 2
, where m
and n
are integers in
{1, 2, ..., 1981}
and (n ^ 2 - m * n - m ^ 2) ^ 2 = 1
.
The trick to this problem is that m
and n
have to be consecutive Fibonacci numbers,
because you can reduce any solution to a smaller one using the Fibonacci recurrence.
theorem
imo1981_q3.problem_predicate.m_le_n
{N : ℕ}
{m n : ℤ}
(h1 : imo1981_q3.problem_predicate N m n) :
m ≤ n
theorem
imo1981_q3.problem_predicate.eq_imp_1
{N : ℕ}
{n : ℤ}
(h1 : imo1981_q3.problem_predicate N n n) :
n = 1
theorem
imo1981_q3.problem_predicate.reduction
{N : ℕ}
{m n : ℤ}
(h1 : imo1981_q3.problem_predicate N m n)
(h2 : 1 < n) :
imo1981_q3.problem_predicate N (n - m) m
Equations
- imo1981_q3.nat_predicate N m n = imo1981_q3.problem_predicate N ↑m ↑n
theorem
imo1981_q3.nat_predicate.reduction
{N m n : ℕ}
(h1 : imo1981_q3.nat_predicate N m n)
(h2 : 1 < n) :
imo1981_q3.nat_predicate N (n - m) m