Identities between operations on the ring of Witt vectors #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we derive common identities between the Frobenius and Verschiebung operators.
Main declarations #
frobenius_verschiebung
: the composition of Frobenius and Verschiebung is multiplication byp
verschiebung_mul_frobenius
: the “projection formula”:V(x * F y) = V x * y
iterate_verschiebung_mul_coeff
: an identity from [Haz09] 6.2
References #
theorem
witt_vector.frobenius_verschiebung
{p : ℕ}
{R : Type u_1}
[hp : fact (nat.prime p)]
[comm_ring R]
(x : witt_vector p R) :
The composition of Frobenius and Verschiebung is multiplication by p
.
theorem
witt_vector.verschiebung_zmod
{p : ℕ}
[hp : fact (nat.prime p)]
(x : witt_vector p (zmod p)) :
⇑witt_vector.verschiebung x = x * ↑p
Verschiebung is the same as multiplication by p
on the ring of Witt vectors of zmod p
.
theorem
witt_vector.verschiebung_mul_frobenius
{p : ℕ}
{R : Type u_1}
[hp : fact (nat.prime p)]
[comm_ring R]
(x y : witt_vector p R) :
The “projection formula” for Frobenius and Verschiebung.
theorem
witt_vector.verschiebung_frobenius
{p : ℕ}
{R : Type u_1}
[hp : fact (nat.prime p)]
[comm_ring R]
[char_p R p]
(x : witt_vector p R) :
Iteration lemmas #
theorem
witt_vector.iterate_verschiebung_mul_left
{p : ℕ}
{R : Type u_1}
[hp : fact (nat.prime p)]
[comm_ring R]
(x y : witt_vector p R)
(i : ℕ) :
theorem
witt_vector.iterate_verschiebung_mul
{p : ℕ}
{R : Type u_1}
[hp : fact (nat.prime p)]
[comm_ring R]
[char_p R p]
(x y : witt_vector p R)
(i j : ℕ) :
theorem
witt_vector.iterate_verschiebung_mul_coeff
{p : ℕ}
{R : Type u_1}
[hp : fact (nat.prime p)]
[comm_ring R]
[char_p R p]
(x y : witt_vector p R)
(i j : ℕ) :
This is a slightly specialized form of Hazewinkel, Witt Vectors 6.2 equation 5.