mathlib3 documentation

data.real.basic

Real numbers from Cauchy sequences #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file defines as the type of equivalence classes of Cauchy sequences of rational numbers. This choice is motivated by how easy it is to prove that is a commutative ring, by simply lifting everything to .

structure real  :

The type of real numbers constructed as equivalence classes of Cauchy sequences of rational numbers.

Instances for real
theorem real.ext_cauchy_iff {x y : } :
x = y x.cauchy = y.cauchy
theorem real.ext_cauchy {x y : } :
x.cauchy = y.cauchy x = y

The real numbers are isomorphic to the quotient of Cauchy sequences on the rationals.

Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
noncomputable def real.has_inv  :
Equations
theorem real.of_cauchy_zero  :
0⟩ = 0
theorem real.of_cauchy_one  :
1⟩ = 1
theorem real.of_cauchy_add (a b : cau_seq.completion.Cauchy has_abs.abs) :
a + b = a⟩ + b⟩
theorem real.of_cauchy_sub (a b : cau_seq.completion.Cauchy has_abs.abs) :
a - b = a⟩ - b⟩
theorem real.of_cauchy_mul (a b : cau_seq.completion.Cauchy has_abs.abs) :
a * b = a⟩ * b⟩
theorem real.cauchy_zero  :
0.cauchy = 0
theorem real.cauchy_one  :
1.cauchy = 1
theorem real.cauchy_add (a b : ) :
(a + b).cauchy = a.cauchy + b.cauchy
theorem real.cauchy_neg (a : ) :
theorem real.cauchy_mul (a b : ) :
(a * b).cauchy = a.cauchy * b.cauchy
theorem real.cauchy_sub (a b : ) :
(a - b).cauchy = a.cauchy - b.cauchy
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
theorem real.of_cauchy_nat_cast (n : ) :
n⟩ = n
theorem real.of_cauchy_int_cast (z : ) :
z⟩ = z
theorem real.of_cauchy_rat_cast (q : ) :
q⟩ = q
@[protected, instance]
Equations

real.equiv_Cauchy as a ring equivalence.

Equations

Extra instances to short-circuit type class resolution.

These short-circuits have an additional property of ensuring that a computable path is found; if field is found first, then decaying it to these typeclasses would result in a noncomputable version of them.

@[protected, instance]
def real.ring  :
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]

The real numbers are a *-ring, with the trivial *-structure.

Equations
@[protected, instance]

Make a real number from a Cauchy sequence of rationals (by taking the equivalence class).

Equations
@[protected, instance]
Equations
theorem real.lt_cauchy {f g : cau_seq has_abs.abs} :
f< g f < g
@[simp]
theorem real.mk_lt {f g : cau_seq has_abs.abs} :
theorem real.mk_zero  :
theorem real.mk_one  :
@[simp]
theorem real.mk_pos {f : cau_seq has_abs.abs} :
@[protected, instance]
Equations
@[simp]
theorem real.mk_le {f g : cau_seq has_abs.abs} :
@[protected]
theorem real.ind_mk {C : Prop} (x : ) (h : (y : cau_seq has_abs.abs), C (real.mk y)) :
C x
theorem real.add_lt_add_iff_left {a b : } (c : ) :
c + a < c + b a < b
@[protected, instance]
Equations
@[protected, instance]
Equations
theorem real.rat_cast_lt {x y : } :
x < y x < y
@[protected]
theorem real.zero_lt_one  :
0 < 1
@[protected]
theorem real.fact_zero_lt_one  :
fact (0 < 1)
@[protected]
theorem real.mul_pos {a b : } :
0 < a 0 < b 0 < a * b
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
Equations
theorem real.of_cauchy_sup (a b : cau_seq has_abs.abs) :
a b = a b
@[simp]
theorem real.mk_sup (a b : cau_seq has_abs.abs) :
@[protected, instance]
Equations
theorem real.of_cauchy_inf (a b : cau_seq has_abs.abs) :
a b = a b
@[simp]
theorem real.mk_inf (a b : cau_seq has_abs.abs) :
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
noncomputable def real.linear_order  :
Equations
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
Equations
@[protected, instance]
noncomputable def real.field  :
Equations
@[protected, instance]
noncomputable def real.division_ring  :
Equations
@[protected, instance]
noncomputable def real.decidable_lt (a b : ) :
decidable (a < b)
Equations
@[protected, instance]
noncomputable def real.decidable_le (a b : ) :
Equations
@[protected, instance]
noncomputable def real.decidable_eq (a b : ) :
decidable (a = b)
Equations
@[protected, instance]
meta def real.has_repr  :

Show an underlying cauchy sequence for real numbers.

The representative chosen is the one passed in the VM to quot.mk, so two cauchy sequences converging to the same number may be printed differently.

theorem real.le_mk_of_forall_le {x : } {f : cau_seq has_abs.abs} :
( (i : ), (j : ), j i x (f j)) x real.mk f
theorem real.mk_le_of_forall_le {f : cau_seq has_abs.abs} {x : } (h : (i : ), (j : ), j i (f j) x) :
theorem real.mk_near_of_forall_near {f : cau_seq has_abs.abs} {x ε : } (H : (i : ), (j : ), j i |(f j) - x| ε) :
|real.mk f - x| ε
@[protected, instance]
@[protected, instance]
noncomputable def real.floor_ring  :
Equations
theorem real.of_near (f : ) (x : ) (h : (ε : ), ε > 0 ( (i : ), (j : ), j i |(f j) - x| < ε)) :
(h' : is_cau_seq has_abs.abs f), real.mk f, h'⟩ = x
theorem real.exists_floor (x : ) :
(ub : ), ub x (z : ), z x z ub
theorem real.exists_is_lub (S : set ) (hne : S.nonempty) (hbdd : bdd_above S) :
(x : ), is_lub S x
@[protected, instance]
noncomputable def real.has_Sup  :
Equations
theorem real.Sup_def (S : set ) :
@[protected]
theorem real.is_lub_Sup (S : set ) (h₁ : S.nonempty) (h₂ : bdd_above S) :
@[protected, instance]
noncomputable def real.has_Inf  :
Equations
@[protected]
theorem real.is_glb_Inf (S : set ) (h₁ : S.nonempty) (h₂ : bdd_below S) :
@[protected, instance]
Equations
theorem real.lt_Inf_add_pos {s : set } (h : s.nonempty) {ε : } (hε : 0 < ε) :
(a : ) (H : a s), a < has_Inf.Inf s + ε
theorem real.add_neg_lt_Sup {s : set } (h : s.nonempty) {ε : } (hε : ε < 0) :
(a : ) (H : a s), has_Sup.Sup s + ε < a
theorem real.Inf_le_iff {s : set } (h : bdd_below s) (h' : s.nonempty) {a : } :
has_Inf.Inf s a (ε : ), 0 < ε ( (x : ) (H : x s), x < a + ε)
theorem real.le_Sup_iff {s : set } (h : bdd_above s) (h' : s.nonempty) {a : } :
a has_Sup.Sup s (ε : ), ε < 0 ( (x : ) (H : x s), a + ε < x)
@[simp]
theorem real.csupr_empty {α : Sort u_1} [is_empty α] (f : α ) :
( (i : α), f i) = 0
@[simp]
theorem real.csupr_const_zero {α : Sort u_1} :
( (i : α), 0) = 0
theorem real.supr_of_not_bdd_above {α : Sort u_1} {f : α } (hf : ¬bdd_above (set.range f)) :
( (i : α), f i) = 0
@[simp]
theorem real.cinfi_empty {α : Sort u_1} [is_empty α] (f : α ) :
( (i : α), f i) = 0
@[simp]
theorem real.cinfi_const_zero {α : Sort u_1} :
( (i : α), 0) = 0
theorem real.infi_of_not_bdd_below {α : Sort u_1} {f : α } (hf : ¬bdd_below (set.range f)) :
( (i : α), f i) = 0
theorem real.Sup_nonneg (S : set ) (hS : (x : ), x S 0 x) :

As 0 is the default value for real.Sup of the empty set or sets which are not bounded above, it suffices to show that S is bounded below by 0 to show that 0 ≤ Sup S.

@[protected]
theorem real.supr_nonneg {ι : Sort u_1} {f : ι } (hf : (i : ι), 0 f i) :
0 (i : ι), f i

As 0 is the default value for real.Sup of the empty set or sets which are not bounded above, it suffices to show that f i is nonnegative to show that 0 ≤ ⨆ i, f i.

@[protected]
theorem real.Sup_le {S : set } {a : } (hS : (x : ), x S x a) (ha : 0 a) :

As 0 is the default value for real.Sup of the empty set or sets which are not bounded above, it suffices to show that all elements of S are bounded by a nonnagative number to show that Sup S is bounded by this number.

@[protected]
theorem real.supr_le {ι : Sort u_1} {f : ι } {a : } (hS : (i : ι), f i a) (ha : 0 a) :
( (i : ι), f i) a
theorem real.Sup_nonpos (S : set ) (hS : (x : ), x S x 0) :

As 0 is the default value for real.Sup of the empty set, it suffices to show that S is bounded above by 0 to show that Sup S ≤ 0.

theorem real.Inf_nonneg (S : set ) (hS : (x : ), x S 0 x) :

As 0 is the default value for real.Inf of the empty set, it suffices to show that S is bounded below by 0 to show that 0 ≤ Inf S.

theorem real.Inf_nonpos (S : set ) (hS : (x : ), x S x 0) :

As 0 is the default value for real.Inf of the empty set or sets which are not bounded below, it suffices to show that S is bounded above by 0 to show that Inf S ≤ 0.

theorem real.Inf_le_Sup (s : set ) (h₁ : bdd_below s) (h₂ : bdd_above s) :