mathlib3 documentation

analysis.normed_space.add_torsor

Torsors of normed space actions. #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file contains lemmas about normed additive torsors over normed spaces.

@[simp]
theorem dist_center_homothety {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem nndist_center_homothety {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_homothety_center {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem nndist_homothety_center {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_line_map_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c₁ c₂ : 𝕜) :
has_dist.dist ((affine_map.line_map p₁ p₂) c₁) ((affine_map.line_map p₁ p₂) c₂) = has_dist.dist c₁ c₂ * has_dist.dist p₁ p₂
@[simp]
theorem nndist_line_map_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c₁ c₂ : 𝕜) :
theorem lipschitz_with_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) :
@[simp]
theorem dist_line_map_left {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem nndist_line_map_left {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_left_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem nndist_left_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_line_map_right {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
has_dist.dist ((affine_map.line_map p₁ p₂) c) p₂ = 1 - c * has_dist.dist p₁ p₂
@[simp]
theorem nndist_line_map_right {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_right_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
has_dist.dist p₂ ((affine_map.line_map p₁ p₂) c) = 1 - c * has_dist.dist p₁ p₂
@[simp]
theorem nndist_right_line_map {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_homothety_self {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
has_dist.dist ((affine_map.homothety p₁ c) p₂) p₂ = 1 - c * has_dist.dist p₁ p₂
@[simp]
theorem nndist_homothety_self {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_self_homothety {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
has_dist.dist p₂ ((affine_map.homothety p₁ c) p₂) = 1 - c * has_dist.dist p₁ p₂
@[simp]
theorem nndist_self_homothety {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] (p₁ p₂ : P) (c : 𝕜) :
@[simp]
theorem dist_left_midpoint {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
has_dist.dist p₁ (midpoint 𝕜 p₁ p₂) = 2⁻¹ * has_dist.dist p₁ p₂
@[simp]
theorem nndist_left_midpoint {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
@[simp]
theorem dist_midpoint_left {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
has_dist.dist (midpoint 𝕜 p₁ p₂) p₁ = 2⁻¹ * has_dist.dist p₁ p₂
@[simp]
theorem nndist_midpoint_left {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
@[simp]
theorem dist_midpoint_right {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
has_dist.dist (midpoint 𝕜 p₁ p₂) p₂ = 2⁻¹ * has_dist.dist p₁ p₂
@[simp]
theorem nndist_midpoint_right {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
@[simp]
theorem dist_right_midpoint {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
has_dist.dist p₂ (midpoint 𝕜 p₁ p₂) = 2⁻¹ * has_dist.dist p₁ p₂
@[simp]
theorem nndist_right_midpoint {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ : P) :
theorem dist_midpoint_midpoint_le' {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ p₃ p₄ : P) :
has_dist.dist (midpoint 𝕜 p₁ p₂) (midpoint 𝕜 p₃ p₄) (has_dist.dist p₁ p₃ + has_dist.dist p₂ p₄) / 2
theorem nndist_midpoint_midpoint_le' {V : Type u_2} {P : Type u_3} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 V] [invertible 2] (p₁ p₂ p₃ p₄ : P) :
has_nndist.nndist (midpoint 𝕜 p₁ p₂) (midpoint 𝕜 p₃ p₄) (has_nndist.nndist p₁ p₃ + has_nndist.nndist p₂ p₄) / 2‖₊
theorem antilipschitz_with_line_map {W : Type u_4} {Q : Type u_5} [normed_add_comm_group W] [metric_space Q] [normed_add_torsor W Q] {𝕜 : Type u_6} [normed_field 𝕜] [normed_space 𝕜 W] {p₁ p₂ : Q} (h : p₁ p₂) :
theorem eventually_homothety_mem_of_mem_interior {W : Type u_4} {Q : Type u_5} [normed_add_comm_group W] [metric_space Q] [normed_add_torsor W Q] (𝕜 : Type u_6) [normed_field 𝕜] [normed_space 𝕜 W] (x : Q) {s : set Q} {y : Q} (hy : y interior s) :
∀ᶠ (δ : 𝕜) in nhds 1, (affine_map.homothety x δ) y s
theorem eventually_homothety_image_subset_of_finite_subset_interior {W : Type u_4} {Q : Type u_5} [normed_add_comm_group W] [metric_space Q] [normed_add_torsor W Q] (𝕜 : Type u_6) [normed_field 𝕜] [normed_space 𝕜 W] (x : Q) {s t : set Q} (ht : t.finite) (h : t interior s) :
∀ᶠ (δ : 𝕜) in nhds 1, (affine_map.homothety x δ) '' t s
theorem dist_midpoint_midpoint_le {V : Type u_2} [seminormed_add_comm_group V] [normed_space V] (p₁ p₂ p₃ p₄ : V) :
has_dist.dist (midpoint p₁ p₂) (midpoint p₃ p₄) (has_dist.dist p₁ p₃ + has_dist.dist p₂ p₄) / 2
theorem nndist_midpoint_midpoint_le {V : Type u_2} [seminormed_add_comm_group V] [normed_space V] (p₁ p₂ p₃ p₄ : V) :
has_nndist.nndist (midpoint p₁ p₂) (midpoint p₃ p₄) (has_nndist.nndist p₁ p₃ + has_nndist.nndist p₂ p₄) / 2
noncomputable def affine_map.of_map_midpoint {V : Type u_2} {P : Type u_3} {W : Type u_4} {Q : Type u_5} [seminormed_add_comm_group V] [pseudo_metric_space P] [normed_add_torsor V P] [normed_add_comm_group W] [metric_space Q] [normed_add_torsor W Q] [normed_space V] [normed_space W] (f : P Q) (h : (x y : P), f (midpoint x y) = midpoint (f x) (f y)) (hfc : continuous f) :

A continuous map between two normed affine spaces is an affine map provided that it sends midpoints to midpoints.

Equations