Clopen upper sets #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define the type of clopen upper sets.
Compact open sets #
- to_clopens : topological_space.clopens α
- upper' : is_upper_set self.to_clopens.carrier
The type of clopen upper sets of a topological space.
Instances for clopen_upper_set
@[protected, instance]
def
clopen_upper_set.set_like
{α : Type u_1}
[topological_space α]
[has_le α] :
set_like (clopen_upper_set α) α
Equations
- clopen_upper_set.set_like = {coe := λ (s : clopen_upper_set α), s.to_clopens.carrier, coe_injective' := _}
theorem
clopen_upper_set.upper
{α : Type u_1}
[topological_space α]
[has_le α]
(s : clopen_upper_set α) :
theorem
clopen_upper_set.clopen
{α : Type u_1}
[topological_space α]
[has_le α]
(s : clopen_upper_set α) :
@[simp]
theorem
clopen_upper_set.to_upper_set_carrier
{α : Type u_1}
[topological_space α]
[has_le α]
(s : clopen_upper_set α) :
s.to_upper_set.carrier = ↑s
def
clopen_upper_set.to_upper_set
{α : Type u_1}
[topological_space α]
[has_le α]
(s : clopen_upper_set α) :
Reinterpret a upper clopen as an upper set.
@[protected, ext]
theorem
clopen_upper_set.ext
{α : Type u_1}
[topological_space α]
[has_le α]
{s t : clopen_upper_set α}
(h : ↑s = ↑t) :
s = t
@[simp]
theorem
clopen_upper_set.coe_mk
{α : Type u_1}
[topological_space α]
[has_le α]
(s : topological_space.clopens α)
(h : is_upper_set s.carrier) :
@[protected, instance]
Equations
- clopen_upper_set.has_sup = {sup := λ (s t : clopen_upper_set α), {to_clopens := s.to_clopens ⊔ t.to_clopens, upper' := _}}
@[protected, instance]
Equations
- clopen_upper_set.has_inf = {inf := λ (s t : clopen_upper_set α), {to_clopens := s.to_clopens ⊓ t.to_clopens, upper' := _}}
@[protected, instance]
Equations
- clopen_upper_set.has_top = {top := {to_clopens := ⊤, upper' := _}}
@[protected, instance]
Equations
- clopen_upper_set.has_bot = {bot := {to_clopens := ⊥, upper' := _}}
@[protected, instance]
Equations
- clopen_upper_set.lattice = function.injective.lattice coe clopen_upper_set.lattice._proof_1 clopen_upper_set.lattice._proof_2 clopen_upper_set.lattice._proof_3
@[protected, instance]
Equations
- clopen_upper_set.bounded_order = bounded_order.lift coe clopen_upper_set.bounded_order._proof_1 clopen_upper_set.bounded_order._proof_2 clopen_upper_set.bounded_order._proof_3
@[simp]
theorem
clopen_upper_set.coe_sup
{α : Type u_1}
[topological_space α]
[has_le α]
(s t : clopen_upper_set α) :
@[simp]
theorem
clopen_upper_set.coe_inf
{α : Type u_1}
[topological_space α]
[has_le α]
(s t : clopen_upper_set α) :
@[simp]
@[simp]
@[protected, instance]