Further lemmas about is_R_or_C
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
theorem
polynomial.of_real_eval
{K : Type u_1}
[is_R_or_C K]
(p : polynomial ℝ)
(x : ℝ) :
↑(polynomial.eval x p) = ⇑(polynomial.aeval ↑x) p
This instance generates a type-class problem with a metavariable ?m
that should satisfy
is_R_or_C ?m
. Since this can only be satisfied by ℝ
or ℂ
, this does not cause problems.
@[protected, nolint, instance]
An is_R_or_C
field is finite-dimensional over ℝ
, since it is spanned by {1, I}
.
theorem
finite_dimensional.proper_is_R_or_C
(K : Type u_1)
(E : Type u_2)
[is_R_or_C K]
[normed_add_comm_group E]
[normed_space K E]
[finite_dimensional K E] :
A finite dimensional vector space over an is_R_or_C
is a proper metric space.
This is not an instance because it would cause a search for finite_dimensional ?x E
before
is_R_or_C ?x
.
@[protected, instance]
def
finite_dimensional.is_R_or_C.proper_space_submodule
(K : Type u_1)
{E : Type u_2}
[is_R_or_C K]
[normed_add_comm_group E]
[normed_space K E]
(S : submodule K E)
[finite_dimensional K ↥S] :
@[simp]
@[simp]