mathlib3 documentation

topology.algebra.module.star

The star operation, bundled as a continuous star-linear equiv #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

@[simp]
theorem starL_apply (R : Type u_1) {A : Type u_2} [comm_semiring R] [star_ring R] [add_comm_monoid A] [star_add_monoid A] [module R A] [star_module R A] [topological_space A] [has_continuous_star A] (ᾰ : A) :

If A is a topological module over a commutative R with compatible actions, then star is a continuous semilinear equivalence.

Equations
@[simp]
theorem starL_symm_apply (R : Type u_1) {A : Type u_2} [comm_semiring R] [star_ring R] [add_comm_monoid A] [star_add_monoid A] [module R A] [star_module R A] [topological_space A] [has_continuous_star A] (ᾰ : A) :
@[simp]
@[simp]
theorem starL'_symm_apply (R : Type u_1) {A : Type u_2} [comm_semiring R] [star_ring R] [has_trivial_star R] [add_comm_monoid A] [star_add_monoid A] [module R A] [star_module R A] [topological_space A] [has_continuous_star A] (ᾰ : A) :
((starL' R).symm) = (star_add_equiv.symm) (({to_fun := id A, map_add' := _, map_smul' := _, inv_fun := id A, left_inv := _, right_inv := _}.symm) ᾰ)

If A is a topological module over a commutative R with trivial star and compatible actions, then star is a continuous linear equivalence.

Equations

The self-adjoint part of an element of a star module, as a continuous linear map.

Equations

The skew-adjoint part of an element of a star module, as a continuous linear map.

Equations

The decomposition of elements of a star module into their self- and skew-adjoint parts, as a continuous linear equivalence.

Equations