mathlib3 documentation

topology.uniform_space.matrix

Uniform space structure on matrices #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

@[protected, instance]
def matrix.uniform_space (m : Type u_1) (n : Type u_2) (π•œ : Type u_3) [uniform_space π•œ] :
uniform_space (matrix m n π•œ)
Equations
theorem matrix.uniformity (m : Type u_1) (n : Type u_2) (π•œ : Type u_3) [uniform_space π•œ] :
uniformity (matrix m n π•œ) = β¨… (i : m) (j : n), filter.comap (Ξ» (a : matrix m n π•œ Γ— matrix m n π•œ), (a.fst i j, a.snd i j)) (uniformity π•œ)
theorem matrix.uniform_continuous (m : Type u_1) (n : Type u_2) (π•œ : Type u_3) [uniform_space π•œ] {Ξ² : Type u_4} [uniform_space Ξ²] {f : Ξ² β†’ matrix m n π•œ} :
uniform_continuous f ↔ βˆ€ (i : m) (j : n), uniform_continuous (Ξ» (x : Ξ²), f x i j)
@[protected, instance]
def matrix.complete_space (m : Type u_1) (n : Type u_2) (π•œ : Type u_3) [uniform_space π•œ] [complete_space π•œ] :
complete_space (matrix m n π•œ)
@[protected, instance]
def matrix.separated_space (m : Type u_1) (n : Type u_2) (π•œ : Type u_3) [uniform_space π•œ] [separated_space π•œ] :
separated_space (matrix m n π•œ)