(Co)Limits of Schemes #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We construct various limits and colimits in the category of schemes.
- The existence of fibred products was shown in
algebraic_geometry/pullbacks.lean
. Spec ℤ
is the terminal object.- The preceding two results imply that
Scheme
has all finite limits. - The empty scheme is the (strict) initial object.
Todo #
- Coproducts exists (and the forgetful functors preserve them).
Spec ℤ
is the terminal object in the category of schemes.
@[protected, instance]
@[protected, instance]
@[simp]
@[simp]
The map from the empty scheme.
Equations
- X.empty_to = {val := {base := {to_fun := λ (x : ↥↑(∅.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace)), pempty.elim x, continuous_to_fun := _}, c := {app := λ (U : (topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier))ᵒᵖ), CommRing.punit_is_terminal.from (X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj U), naturality' := _}}, prop := _}
@[ext]
@[protected, instance]
Equations
- algebraic_geometry.quiver.hom.unique X = {to_inhabited := {default := X.empty_to}, uniq := _}
The empty scheme is the initial object in the category of schemes.
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
def
algebraic_geometry.is_iso_of_is_empty
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y)
[is_empty ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)] :
noncomputable
def
algebraic_geometry.is_initial_of_is_empty
{X : algebraic_geometry.Scheme}
[is_empty ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)] :
A scheme is initial if its underlying space is empty .
Spec 0
is the initial object in the category of schemes.
@[protected, instance]
@[protected, instance]
@[protected, instance]