THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The forgetful functor from ℤ-modules to additive commutative groups is an equivalence of categories.
TODO:
either use this equivalence to transport the monoidal structure from Module ℤ
to Ab
,
or, having constructed that monoidal structure directly, show this functor is monoidal.
@[protected, instance]
The forgetful functor from ℤ
modules to AddCommGroup
is full.
Equations
- Module.forget₂_AddCommGroup_full = {preimage := λ (A B : Module ℤ) (f : (category_theory.forget₂ (Module ℤ) AddCommGroup).obj A ⟶ (category_theory.forget₂ (Module ℤ) AddCommGroup).obj B), {to_fun := ⇑f, map_add' := _, map_smul' := _}, witness' := Module.forget₂_AddCommGroup_full._proof_3}
@[protected, instance]
The forgetful functor from ℤ
modules to AddCommGroup
is essentially surjective.
@[protected, instance]