Polynomials supported by a set of variables #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains the definition and lemmas about mv_polynomial.supported
.
Main definitions #
mv_polynomial.supported
: Given a sets : set σ
,supported R s
is the subalgebra ofmv_polynomial σ R
consisting of polynomials whose set of variables is contained ins
. This subalgebra is isomorphic tomv_polynomial s R
Tags #
variables, polynomial, vars
noncomputable
def
mv_polynomial.supported
{σ : Type u_1}
(R : Type u)
[comm_semiring R]
(s : set σ) :
subalgebra R (mv_polynomial σ R)
The set of polynomials whose variables are contained in s
as a subalgebra
over R
.
Equations
- mv_polynomial.supported R s = algebra.adjoin R (mv_polynomial.X '' s)
theorem
mv_polynomial.supported_eq_range_rename
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
(s : set σ) :
noncomputable
def
mv_polynomial.supported_equiv_mv_polynomial
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
(s : set σ) :
↥(mv_polynomial.supported R s) ≃ₐ[R] mv_polynomial ↥s R
The isomorphism between the subalgebra of polynomials supported by s
and mv_polynomial s R
Equations
@[simp]
theorem
mv_polynomial.supported_equiv_mv_polynomial_symm_C
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
(s : set σ)
(x : R) :
⇑((mv_polynomial.supported_equiv_mv_polynomial s).symm) (⇑mv_polynomial.C x) = ⇑(algebra_map R ↥(mv_polynomial.supported R s)) x
@[simp]
theorem
mv_polynomial.supported_equiv_mv_polynomial_symm_X
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
(s : set σ)
(i : ↥s) :
theorem
mv_polynomial.mem_supported
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
{p : mv_polynomial σ R}
{s : set σ} :
theorem
mv_polynomial.supported_eq_vars_subset
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
{s : set σ} :
↑(mv_polynomial.supported R s) = {p : mv_polynomial σ R | ↑(p.vars) ⊆ s}
@[simp]
theorem
mv_polynomial.mem_supported_vars
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
(p : mv_polynomial σ R) :
p ∈ mv_polynomial.supported R ↑(p.vars)
theorem
mv_polynomial.supported_eq_adjoin_X
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
(s : set σ) :
mv_polynomial.supported R s = algebra.adjoin R (mv_polynomial.X '' s)
@[simp]
@[simp]
theorem
mv_polynomial.supported_mono
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
{s t : set σ}
(st : s ⊆ t) :
@[simp]
theorem
mv_polynomial.X_mem_supported
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
{s : set σ}
[nontrivial R]
{i : σ} :
mv_polynomial.X i ∈ mv_polynomial.supported R s ↔ i ∈ s
@[simp]
theorem
mv_polynomial.supported_le_supported_iff
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
{s t : set σ}
[nontrivial R] :
mv_polynomial.supported R s ≤ mv_polynomial.supported R t ↔ s ⊆ t
theorem
mv_polynomial.supported_strict_mono
{σ : Type u_1}
{R : Type u}
[comm_semiring R]
[nontrivial R] :