N₁ and N₂ reflects isomorphisms #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, it is shown that the functors
N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ)
and
N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))
reflect isomorphisms for any preadditive category C
.
(See equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
@[protected, instance]
theorem
algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi
{C : Type u_1}
[category_theory.category C]
[category_theory.preadditive C] :
algebraic_topology.dold_kan.N₂ ⋙ (category_theory.idempotents.karoubi_chain_complex_equivalence C ℕ).functor = category_theory.idempotents.karoubi_functor_category_embedding simplex_categoryᵒᵖ C ⋙ algebraic_topology.dold_kan.N₁ ⋙ (category_theory.idempotents.karoubi_chain_complex_equivalence (category_theory.idempotents.karoubi C) ℕ).functor ⋙ (category_theory.idempotents.karoubi_karoubi.equivalence C).inverse.map_homological_complex (complex_shape.down ℕ)
@[protected, instance]
def
algebraic_topology.dold_kan.N₂.category_theory.reflects_isomorphisms
{C : Type u_1}
[category_theory.category C]
[category_theory.preadditive C] :
We deduce that N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))
reflects isomorphisms from the fact that
N₁ : simplicial_object (karoubi C) ⥤ karoubi (chain_complex (karoubi C) ℕ)
does.