mathlib3 documentation

probability.kernel.basic

Markov Kernels #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

A kernel from a measurable space α to another measurable space β is a measurable map α → measure β, where the measurable space instance on measure β is the one defined in measure_theory.measure.measurable_space. That is, a kernel κ verifies that for all measurable sets s of β, a ↦ κ a s is measurable.

Main definitions #

Classes of kernels:

Particular kernels:

Main statements #

A kernel from a measurable space α to another measurable space β is a measurable function κ : α → measure β. The measurable space structure on measure β is given by measure_theory.measure.measurable_space. A map κ : α → measure β is measurable iff ∀ s : set β, measurable_set s → measurable (λ a, κ a s).

Equations
Instances for probability_theory.kernel
@[simp]
theorem probability_theory.kernel.coe_fn_zero {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} :
0 = 0
@[simp]
theorem probability_theory.kernel.coe_fn_add {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} (κ η : (probability_theory.kernel α β)) :
+ η) = κ + η
@[simp]
theorem probability_theory.kernel.zero_apply {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} (a : α) :
0 a = 0
@[simp]
theorem probability_theory.kernel.coe_finset_sum {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} (I : finset ι) (κ : ι (probability_theory.kernel α β)) :
(I.sum (λ (i : ι), κ i)) = I.sum (λ (i : ι), (κ i))
theorem probability_theory.kernel.finset_sum_apply {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} (I : finset ι) (κ : ι (probability_theory.kernel α β)) (a : α) :
(I.sum (λ (i : ι), κ i)) a = I.sum (λ (i : ι), (κ i) a)
theorem probability_theory.kernel.finset_sum_apply' {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} (I : finset ι) (κ : ι (probability_theory.kernel α β)) (a : α) (s : set β) :
((I.sum (λ (i : ι), κ i)) a) s = I.sum (λ (i : ι), ((κ i) a) s)

A constant C : ℝ≥0∞ such that C < ∞ (is_finite_kernel.bound_lt_top κ) and for all a : α and s : set β, κ a s ≤ C (measure_le_bound κ a s).

Equations
@[protected, instance]
@[ext]
theorem probability_theory.kernel.ext {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} (h : (a : α), κ a = η a) :
κ = η
theorem probability_theory.kernel.ext_iff {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} :
κ = η (a : α), κ a = η a
theorem probability_theory.kernel.ext_iff' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} :
κ = η (a : α) (s : set β), measurable_set s (κ a) s = (η a) s
theorem probability_theory.kernel.ext_fun {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} (h : (a : α) (f : β ennreal), measurable f ∫⁻ (b : β), f b κ a = ∫⁻ (b : β), f b η a) :
κ = η
theorem probability_theory.kernel.ext_fun_iff {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} :
κ = η (a : α) (f : β ennreal), measurable f ∫⁻ (b : β), f b κ a = ∫⁻ (b : β), f b η a
@[protected]
theorem probability_theory.kernel.measurable {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} (κ : (probability_theory.kernel α β)) :
@[protected]
theorem probability_theory.kernel.measurable_coe {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} (κ : (probability_theory.kernel α β)) {s : set β} (hs : measurable_set s) :
measurable (λ (a : α), (κ a) s)
@[protected]
noncomputable def probability_theory.kernel.sum {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} [countable ι] (κ : ι (probability_theory.kernel α β)) :

Sum of an indexed family of kernels.

Equations
theorem probability_theory.kernel.sum_apply {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} [countable ι] (κ : ι (probability_theory.kernel α β)) (a : α) :
theorem probability_theory.kernel.sum_apply' {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} [countable ι] (κ : ι (probability_theory.kernel α β)) (a : α) {s : set β} (hs : measurable_set s) :
((probability_theory.kernel.sum κ) a) s = ∑' (n : ι), ((κ n) a) s
@[simp]
theorem probability_theory.kernel.sum_zero {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} [countable ι] :
probability_theory.kernel.sum (λ (i : ι), 0) = 0
theorem probability_theory.kernel.sum_comm {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} [countable ι] (κ : ι ι (probability_theory.kernel α β)) :
@[simp]
theorem probability_theory.kernel.sum_fintype {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} [fintype ι] (κ : ι (probability_theory.kernel α β)) :

A sequence of finite kernels such that κ = kernel.sum (seq κ). See is_finite_kernel_seq and kernel_sum_seq.

Equations
Instances for probability_theory.kernel.seq
theorem probability_theory.kernel.is_s_finite_kernel.finset_sum {α : Type u_1} {β : Type u_2} {ι : Type u_3} {mα : measurable_space α} {mβ : measurable_space β} {κs : ι (probability_theory.kernel α β)} (I : finset ι) (h : (i : ι), i I probability_theory.is_s_finite_kernel (κs i)) :
noncomputable def probability_theory.kernel.deterministic {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} (f : α β) (hf : measurable f) :

Kernel which to a associates the dirac measure at f a. This is a Markov kernel.

Equations
Instances for probability_theory.kernel.deterministic
theorem probability_theory.kernel.deterministic_apply' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : α β} (hf : measurable f) (a : α) {s : set β} (hs : measurable_set s) :
((probability_theory.kernel.deterministic f hf) a) s = s.indicator (λ (_x : β), 1) (f a)
theorem probability_theory.kernel.lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : β ennreal} {g : α β} {a : α} (hg : measurable g) (hf : measurable f) :
@[simp]
theorem probability_theory.kernel.lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : β ennreal} {g : α β} {a : α} (hg : measurable g) [measurable_singleton_class β] :
theorem probability_theory.kernel.set_lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : β ennreal} {g : α β} {a : α} (hg : measurable g) (hf : measurable f) {s : set β} (hs : measurable_set s) [decidable (g a s)] :
∫⁻ (x : β) in s, f x (probability_theory.kernel.deterministic g hg) a = ite (g a s) (f (g a)) 0
@[simp]
theorem probability_theory.kernel.set_lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : β ennreal} {g : α β} {a : α} (hg : measurable g) [measurable_singleton_class β] (s : set β) [decidable (g a s)] :
∫⁻ (x : β) in s, f x (probability_theory.kernel.deterministic g hg) a = ite (g a s) (f (g a)) 0
theorem probability_theory.kernel.integral_deterministic' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {g : α β} {a : α} (hg : measurable g) (hf : measure_theory.strongly_measurable f) :
@[simp]
theorem probability_theory.kernel.integral_deterministic {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {g : α β} {a : α} (hg : measurable g) [measurable_singleton_class β] :
theorem probability_theory.kernel.set_integral_deterministic' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {g : α β} {a : α} (hg : measurable g) (hf : measure_theory.strongly_measurable f) {s : set β} (hs : measurable_set s) [decidable (g a s)] :
(x : β) in s, f x (probability_theory.kernel.deterministic g hg) a = ite (g a s) (f (g a)) 0
@[simp]
theorem probability_theory.kernel.set_integral_deterministic {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {g : α β} {a : α} (hg : measurable g) [measurable_singleton_class β] (s : set β) [decidable (g a s)] :
(x : β) in s, f x (probability_theory.kernel.deterministic g hg) a = ite (g a s) (f (g a)) 0

Constant kernel, which always returns the same measure.

Equations
Instances for probability_theory.kernel.const
theorem probability_theory.kernel.const_apply {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} (μβ : measure_theory.measure β) (a : α) :
@[simp]
theorem probability_theory.kernel.lintegral_const {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : β ennreal} {μ : measure_theory.measure β} {a : α} :
∫⁻ (x : β), f x (probability_theory.kernel.const α μ) a = ∫⁻ (x : β), f x μ
@[simp]
theorem probability_theory.kernel.set_lintegral_const {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {f : β ennreal} {μ : measure_theory.measure β} {a : α} {s : set β} :
∫⁻ (x : β) in s, f x (probability_theory.kernel.const α μ) a = ∫⁻ (x : β) in s, f x μ
@[simp]
theorem probability_theory.kernel.integral_const {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {μ : measure_theory.measure β} {a : α} :
(x : β), f x (probability_theory.kernel.const α μ) a = (x : β), f x μ
@[simp]
theorem probability_theory.kernel.set_integral_const {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {μ : measure_theory.measure β} {a : α} {s : set β} :
(x : β) in s, f x (probability_theory.kernel.const α μ) a = (x : β) in s, f x μ

In a countable space with measurable singletons, every function α → measure β defines a kernel.

Equations
@[protected]
noncomputable def probability_theory.kernel.restrict {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {s : set β} (κ : (probability_theory.kernel α β)) (hs : measurable_set s) :

Kernel given by the restriction of the measures in the image of a kernel to a set.

Equations
Instances for probability_theory.kernel.restrict
theorem probability_theory.kernel.restrict_apply {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {s : set β} (κ : (probability_theory.kernel α β)) (hs : measurable_set s) (a : α) :
theorem probability_theory.kernel.restrict_apply' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {s t : set β} (κ : (probability_theory.kernel α β)) (hs : measurable_set s) (a : α) (ht : measurable_set t) :
@[simp]
theorem probability_theory.kernel.lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {s : set β} (κ : (probability_theory.kernel α β)) (hs : measurable_set s) (a : α) (f : β ennreal) :
∫⁻ (b : β), f b (probability_theory.kernel.restrict κ hs) a = ∫⁻ (b : β) in s, f b κ a
@[simp]
theorem probability_theory.kernel.set_lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {s : set β} (κ : (probability_theory.kernel α β)) (hs : measurable_set s) (a : α) (f : β ennreal) (t : set β) :
∫⁻ (b : β) in t, f b (probability_theory.kernel.restrict κ hs) a = ∫⁻ (b : β) in t s, f b κ a
@[simp]
theorem probability_theory.kernel.set_integral_restrict {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ : (probability_theory.kernel α β)} {s : set β} {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] {f : β E} {a : α} (hs : measurable_set s) (t : set β) :
(x : β) in t, f x (probability_theory.kernel.restrict κ hs) a = (x : β) in t s, f x κ a
noncomputable def probability_theory.kernel.comap_right {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {γ : Type u_4} {mγ : measurable_space γ} {f : γ β} (κ : (probability_theory.kernel α β)) (hf : measurable_embedding f) :

Kernel with value (κ a).comap f, for a measurable embedding f. That is, for a measurable set t : set β, comap_right κ hf a t = κ a (f '' t).

Equations
Instances for probability_theory.kernel.comap_right
theorem probability_theory.kernel.comap_right_apply {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {γ : Type u_4} {mγ : measurable_space γ} {f : γ β} (κ : (probability_theory.kernel α β)) (hf : measurable_embedding f) (a : α) :
theorem probability_theory.kernel.comap_right_apply' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {γ : Type u_4} {mγ : measurable_space γ} {f : γ β} (κ : (probability_theory.kernel α β)) (hf : measurable_embedding f) (a : α) {t : set γ} (ht : measurable_set t) :
def probability_theory.kernel.piecewise {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {s : set α} [decidable_pred (λ (_x : α), _x s)] (hs : measurable_set s) (κ η : (probability_theory.kernel α β)) :

piecewise hs κ η is the kernel equal to κ on the measurable set s and to η on its complement.

Equations
Instances for probability_theory.kernel.piecewise
theorem probability_theory.kernel.piecewise_apply {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} {s : set α} {hs : measurable_set s} [decidable_pred (λ (_x : α), _x s)] (a : α) :
(probability_theory.kernel.piecewise hs κ η) a = ite (a s) (κ a) (η a)
theorem probability_theory.kernel.piecewise_apply' {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} {s : set α} {hs : measurable_set s} [decidable_pred (λ (_x : α), _x s)] (a : α) (t : set β) :
((probability_theory.kernel.piecewise hs κ η) a) t = ite (a s) ((κ a) t) ((η a) t)
theorem probability_theory.kernel.lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} {s : set α} {hs : measurable_set s} [decidable_pred (λ (_x : α), _x s)] (a : α) (g : β ennreal) :
∫⁻ (b : β), g b (probability_theory.kernel.piecewise hs κ η) a = ite (a s) (∫⁻ (b : β), g b κ a) (∫⁻ (b : β), g b η a)
theorem probability_theory.kernel.set_lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} {s : set α} {hs : measurable_set s} [decidable_pred (λ (_x : α), _x s)] (a : α) (g : β ennreal) (t : set β) :
∫⁻ (b : β) in t, g b (probability_theory.kernel.piecewise hs κ η) a = ite (a s) (∫⁻ (b : β) in t, g b κ a) (∫⁻ (b : β) in t, g b η a)
theorem probability_theory.kernel.integral_piecewise {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} {s : set α} {hs : measurable_set s} [decidable_pred (λ (_x : α), _x s)] {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] (a : α) (g : β E) :
(b : β), g b (probability_theory.kernel.piecewise hs κ η) a = ite (a s) ( (b : β), g b κ a) ( (b : β), g b η a)
theorem probability_theory.kernel.set_integral_piecewise {α : Type u_1} {β : Type u_2} {mα : measurable_space α} {mβ : measurable_space β} {κ η : (probability_theory.kernel α β)} {s : set α} {hs : measurable_set s} [decidable_pred (λ (_x : α), _x s)] {E : Type u_3} [normed_add_comm_group E] [normed_space E] [complete_space E] (a : α) (g : β E) (t : set β) :
(b : β) in t, g b (probability_theory.kernel.piecewise hs κ η) a = ite (a s) ( (b : β) in t, g b κ a) ( (b : β) in t, g b η a)