mathlib documentation

deprecated.group

Unbundled monoid and group homomorphisms #

This file defines predicates for unbundled monoid and group homomorphisms. Though bundled morphisms are preferred in mathlib, these unbundled predicates are still occasionally used in mathlib, and probably will not go away before Lean 4 because Lean 3 often fails to coerce a bundled homomorphism to a function.

Main Definitions #

is_monoid_hom (deprecated), is_group_hom (deprecated)

Tags #

is_group_hom, is_monoid_hom

structure is_add_hom {α : Type u_1} {β : Type u_2} [has_add α] [has_add β] (f : α → β) :
Prop
  • map_add : ∀ (x y : α), f (x + y) = f x + f y

Predicate for maps which preserve an addition.

structure is_mul_hom {α : Type u_1} {β : Type u_2} [has_mul α] [has_mul β] (f : α → β) :
Prop
  • map_mul : ∀ (x y : α), f (x * y) = (f x) * f y

Predicate for maps which preserve a multiplication.

theorem is_add_hom.id {α : Type u} [has_add α] :

The identity map preserves addition

theorem is_mul_hom.id {α : Type u} [has_mul α] :

The identity map preserves multiplication.

theorem is_add_hom.comp {α : Type u} {β : Type v} [has_add α] [has_add β] {γ : Type u_1} [has_add γ] {f : α → β} {g : β → γ} (hf : is_add_hom f) (hg : is_add_hom g) :

The composition of addition preserving maps also preserves addition

theorem is_mul_hom.comp {α : Type u} {β : Type v} [has_mul α] [has_mul β] {γ : Type u_1} [has_mul γ] {f : α → β} {g : β → γ} (hf : is_mul_hom f) (hg : is_mul_hom g) :

The composition of maps which preserve multiplication, also preserves multiplication.

theorem is_mul_hom.mul {α : Type u_1} {β : Type u_2} [semigroup α] [comm_semigroup β] {f g : α → β} (hf : is_mul_hom f) (hg : is_mul_hom g) :
is_mul_hom (λ (a : α), (f a) * g a)

A product of maps which preserve multiplication, preserves multiplication when the target is commutative.

theorem is_add_hom.add {α : Type u_1} {β : Type u_2} [add_semigroup α] [add_comm_semigroup β] {f g : α → β} (hf : is_add_hom f) (hg : is_add_hom g) :
is_add_hom (λ (a : α), f a + g a)
theorem is_mul_hom.inv {α : Type u_1} {β : Type u_2} [has_mul α] [comm_group β] {f : α → β} (hf : is_mul_hom f) :
is_mul_hom (λ (a : α), (f a)⁻¹)

The inverse of a map which preserves multiplication, preserves multiplication when the target is commutative.

theorem is_add_hom.neg {α : Type u_1} {β : Type u_2} [has_add α] [add_comm_group β] {f : α → β} (hf : is_add_hom f) :
is_add_hom (λ (a : α), -f a)
structure is_add_monoid_hom {α : Type u} {β : Type v} [add_zero_class α] [add_zero_class β] (f : α → β) :
Prop

Predicate for add_monoid homomorphisms (deprecated -- use the bundled monoid_hom version).

structure is_monoid_hom {α : Type u} {β : Type v} [mul_one_class α] [mul_one_class β] (f : α → β) :
Prop

Predicate for monoid homomorphisms (deprecated -- use the bundled monoid_hom version).

def monoid_hom.of {M : Type u_1} {N : Type u_2} [mM : mul_one_class M] [mN : mul_one_class N] {f : M → N} (h : is_monoid_hom f) :
M →* N

Interpret a map f : M → N as a homomorphism M →* N.

Equations
def add_monoid_hom.of {M : Type u_1} {N : Type u_2} [mM : add_zero_class M] [mN : add_zero_class N] {f : M → N} (h : is_add_monoid_hom f) :
M →+ N

Interpret a map f : M → N as a homomorphism M →+ N.

@[simp]
theorem monoid_hom.coe_of {M : Type u_1} {N : Type u_2} {mM : mul_one_class M} {mN : mul_one_class N} {f : M → N} (hf : is_monoid_hom f) :
@[simp]
theorem add_monoid_hom.coe_of {M : Type u_1} {N : Type u_2} {mM : add_zero_class M} {mN : add_zero_class N} {f : M → N} (hf : is_add_monoid_hom f) :
theorem add_monoid_hom.is_add_monoid_hom_coe {M : Type u_1} {N : Type u_2} {mM : add_zero_class M} {mN : add_zero_class N} (f : M →+ N) :
theorem monoid_hom.is_monoid_hom_coe {M : Type u_1} {N : Type u_2} {mM : mul_one_class M} {mN : mul_one_class N} (f : M →* N) :
theorem mul_equiv.is_mul_hom {M : Type u_1} {N : Type u_2} [mul_one_class M] [mul_one_class N] (h : M ≃* N) :

A multiplicative isomorphism preserves multiplication (deprecated).

theorem add_equiv.is_add_hom {M : Type u_1} {N : Type u_2} [add_zero_class M] [add_zero_class N] (h : M ≃+ N) :
theorem add_equiv.is_add_monoid_hom {M : Type u_1} {N : Type u_2} [add_zero_class M] [add_zero_class N] (h : M ≃+ N) :
theorem mul_equiv.is_monoid_hom {M : Type u_1} {N : Type u_2} [mul_one_class M] [mul_one_class N] (h : M ≃* N) :

A multiplicative bijection between two monoids is a monoid hom (deprecated -- use mul_equiv.to_monoid_hom).

theorem is_monoid_hom.map_mul {α : Type u} {β : Type v} [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f) (x y : α) :
f (x * y) = (f x) * f y

A monoid homomorphism preserves multiplication.

theorem is_add_monoid_hom.map_add {α : Type u} {β : Type v} [add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) (x y : α) :
f (x + y) = f x + f y
theorem is_monoid_hom.inv {α : Type u_1} {β : Type u_2} [mul_one_class α] [comm_group β] {f : α → β} (hf : is_monoid_hom f) :
is_monoid_hom (λ (a : α), (f a)⁻¹)

The inverse of a map which preserves multiplication, preserves multiplication when the target is commutative.

theorem is_add_monoid_hom.neg {α : Type u_1} {β : Type u_2} [add_zero_class α] [add_comm_group β] {f : α → β} (hf : is_add_monoid_hom f) :
is_add_monoid_hom (λ (a : α), -f a)
theorem is_mul_hom.to_is_monoid_hom {α : Type u} {β : Type v} [mul_one_class α] [group β] {f : α → β} (hf : is_mul_hom f) :

A map to a group preserving multiplication is a monoid homomorphism.

theorem is_add_hom.to_is_add_monoid_hom {α : Type u} {β : Type v} [add_zero_class α] [add_group β] {f : α → β} (hf : is_add_hom f) :
theorem is_monoid_hom.id {α : Type u} [mul_one_class α] :

The identity map is a monoid homomorphism.

theorem is_add_monoid_hom.comp {α : Type u} {β : Type v} [add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) {γ : Type u_1} [add_zero_class γ] {g : β → γ} (hg : is_add_monoid_hom g) :
theorem is_monoid_hom.comp {α : Type u} {β : Type v} [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f) {γ : Type u_1} [mul_one_class γ] {g : β → γ} (hg : is_monoid_hom g) :

The composite of two monoid homomorphisms is a monoid homomorphism.

theorem is_add_monoid_hom.is_add_monoid_hom_mul_left {γ : Type u_1} [non_unital_non_assoc_semiring γ] (x : γ) :
is_add_monoid_hom (λ (y : γ), x * y)

Left multiplication in a ring is an additive monoid morphism.

theorem is_add_monoid_hom.is_add_monoid_hom_mul_right {γ : Type u_1} [non_unital_non_assoc_semiring γ] (x : γ) :
is_add_monoid_hom (λ (y : γ), y * x)

Right multiplication in a ring is an additive monoid morphism.

structure is_add_group_hom {α : Type u} {β : Type v} [add_group α] [add_group β] (f : α → β) :
Prop

Predicate for additive group homomorphism (deprecated -- use bundled monoid_hom).

structure is_group_hom {α : Type u} {β : Type v} [group α] [group β] (f : α → β) :
Prop

Predicate for group homomorphisms (deprecated -- use bundled monoid_hom).

theorem add_monoid_hom.is_add_group_hom {G : Type u_1} {H : Type u_2} {_x : add_group G} {_x_1 : add_group H} (f : G →+ H) :
theorem monoid_hom.is_group_hom {G : Type u_1} {H : Type u_2} {_x : group G} {_x_1 : group H} (f : G →* H) :
theorem add_equiv.is_add_group_hom {G : Type u_1} {H : Type u_2} {_x : add_group G} {_x_1 : add_group H} (h : G ≃+ H) :
theorem mul_equiv.is_group_hom {G : Type u_1} {H : Type u_2} {_x : group G} {_x_1 : group H} (h : G ≃* H) :
theorem is_add_group_hom.mk' {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : ∀ (x y : α), f (x + y) = f x + f y) :
theorem is_group_hom.mk' {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : ∀ (x y : α), f (x * y) = (f x) * f y) :

Construct is_group_hom from its only hypothesis.

theorem is_group_hom.map_mul {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) (x y : α) :
f (x * y) = (f x) * f y
theorem is_add_group_hom.to_is_add_monoid_hom {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) :
theorem is_group_hom.to_is_monoid_hom {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) :

A group homomorphism is a monoid homomorphism.

theorem is_add_group_hom.map_zero {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) :
f 0 = 0
theorem is_group_hom.map_one {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) :
f 1 = 1

A group homomorphism sends 1 to 1.

theorem is_add_group_hom.map_neg {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) (a : α) :
f (-a) = -f a
theorem is_group_hom.map_inv {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) (a : α) :
f a⁻¹ = (f a)⁻¹

A group homomorphism sends inverses to inverses.

theorem is_group_hom.id {α : Type u} [group α] :

The identity is a group homomorphism.

theorem is_add_group_hom.id {α : Type u} [add_group α] :
theorem is_add_group_hom.comp {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) {γ : Type u_1} [add_group γ] {g : β → γ} (hg : is_add_group_hom g) :
theorem is_group_hom.comp {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) {γ : Type u_1} [group γ] {g : β → γ} (hg : is_group_hom g) :

The composition of two group homomorphisms is a group homomorphism.

theorem is_group_hom.injective_iff {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) :
function.injective f ∀ (a : α), f a = 1a = 1

A group homomorphism is injective iff its kernel is trivial.

theorem is_add_group_hom.injective_iff {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) :
function.injective f ∀ (a : α), f a = 0a = 0
theorem is_group_hom.mul {α : Type u_1} {β : Type u_2} [group α] [comm_group β] {f g : α → β} (hf : is_group_hom f) (hg : is_group_hom g) :
is_group_hom (λ (a : α), (f a) * g a)

The product of group homomorphisms is a group homomorphism if the target is commutative.

theorem is_add_group_hom.add {α : Type u_1} {β : Type u_2} [add_group α] [add_comm_group β] {f g : α → β} (hf : is_add_group_hom f) (hg : is_add_group_hom g) :
is_add_group_hom (λ (a : α), f a + g a)
theorem is_add_group_hom.neg {α : Type u_1} {β : Type u_2} [add_group α] [add_comm_group β] {f : α → β} (hf : is_add_group_hom f) :
is_add_group_hom (λ (a : α), -f a)
theorem is_group_hom.inv {α : Type u_1} {β : Type u_2} [group α] [comm_group β] {f : α → β} (hf : is_group_hom f) :
is_group_hom (λ (a : α), (f a)⁻¹)

The inverse of a group homomorphism is a group homomorphism if the target is commutative.

These instances look redundant, because deprecated.ring provides is_ring_hom for a →+*. Nevertheless these are harmless, and helpful for stripping out dependencies on deprecated.ring.

theorem ring_hom.to_is_monoid_hom {R : Type u_1} {S : Type u_2} [non_assoc_semiring R] [non_assoc_semiring S] (f : R →+* S) :
theorem ring_hom.to_is_add_monoid_hom {R : Type u_1} {S : Type u_2} [non_assoc_semiring R] [non_assoc_semiring S] (f : R →+* S) :
theorem ring_hom.to_is_add_group_hom {R : Type u_1} {S : Type u_2} [ring R] [ring S] (f : R →+* S) :
theorem inv.is_group_hom {α : Type u} [comm_group α] :

Inversion is a group homomorphism if the group is commutative.

Negation is an add_group homomorphism if the add_group is commutative.

theorem is_add_group_hom.map_sub {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) (a b : α) :
f (a - b) = f a - f b

Additive group homomorphisms commute with subtraction.

theorem is_add_group_hom.sub {α : Type u_1} {β : Type u_2} [add_group α] [add_comm_group β] {f g : α → β} (hf : is_add_group_hom f) (hg : is_add_group_hom g) :
is_add_group_hom (λ (a : α), f a - g a)

The difference of two additive group homomorphisms is an additive group homomorphism if the target is commutative.

def units.map' {M : Type u_1} {N : Type u_2} [monoid M] [monoid N] {f : M → N} (hf : is_monoid_hom f) :

The group homomorphism on units induced by a multiplicative morphism.

Equations
@[simp]
theorem units.coe_map' {M : Type u_1} {N : Type u_2} [monoid M] [monoid N] {f : M → N} (hf : is_monoid_hom f) (x : units M) :
((units.map' hf) x) = f x
theorem units.coe_is_monoid_hom {M : Type u_1} [monoid M] :
theorem is_unit.map' {M : Type u_1} {N : Type u_2} [monoid M] [monoid N] {f : M → N} (hf : is_monoid_hom f) {x : M} (h : is_unit x) :
is_unit (f x)
theorem additive.is_add_hom {α : Type u} {β : Type v} [has_mul α] [has_mul β] {f : α → β} (hf : is_mul_hom f) :
theorem multiplicative.is_mul_hom {α : Type u} {β : Type v} [has_add α] [has_add β] {f : α → β} (hf : is_add_hom f) :
theorem additive.is_add_monoid_hom {α : Type u} {β : Type v} [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f) :
theorem multiplicative.is_monoid_hom {α : Type u} {β : Type v} [add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) :
theorem additive.is_add_group_hom {α : Type u} {β : Type v} [group α] [group β] {f : α → β} (hf : is_group_hom f) :
theorem multiplicative.is_group_hom {α : Type u} {β : Type v} [add_group α] [add_group β] {f : α → β} (hf : is_add_group_hom f) :