mathlib documentation

linear_algebra.determinant

def matrix.det {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) :
R

The determinant of a matrix given by the Leibniz formula.

Equations
@[simp]
theorem matrix.det_diagonal {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {d : n → R} :
(matrix.diagonal d).det = ∏ (i : n), d i

@[simp]
theorem matrix.det_zero {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (h : nonempty n) :
0.det = 0

@[simp]
theorem matrix.det_one {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :
1.det = 1

theorem matrix.det_eq_one_of_card_eq_zero {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {A : matrix n n R} (h : fintype.card n = 0) :
A.det = 1

theorem matrix.det_mul_aux {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {M N : matrix n n R} {p : n → n} (H : ¬function.bijective p) :
∑ (σ : equiv.perm n), ((equiv.perm.sign σ)) * ∏ (x : n), (M (σ x) (p x)) * N (p x) x = 0

@[simp]
theorem matrix.det_mul {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M N : matrix n n R) :
(M N).det = (M.det) * N.det

@[instance]
def matrix.det.is_monoid_hom {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :

@[simp]
theorem matrix.det_transpose {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) :

Transposing a matrix preserves the determinant.

@[simp]
theorem matrix.det_permutation {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (σ : equiv.perm n) :

The determinant of a permutation matrix equals its sign.

theorem matrix.det_permute {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (σ : equiv.perm n) (M : matrix n n R) :
matrix.det (λ (i : n), M (σ i)) = ((equiv.perm.sign σ)) * M.det

Permuting the columns changes the sign of the determinant.

@[simp]
theorem matrix.det_smul {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {A : matrix n n R} {c : R} :
(c A).det = (c ^ fintype.card n) * A.det

theorem matrix.ring_hom.map_det {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {S : Type w} [comm_ring S] {M : matrix n n R} {f : R →+* S} :

theorem matrix.alg_hom.map_det {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {S : Type w} [comm_ring S] [algebra R S] {T : Type z} [comm_ring T] [algebra R T] {M : matrix n n S} {f : S →ₐ[R] T} :

det_zero section

Prove that a matrix with a repeated column has determinant equal to zero.

theorem matrix.det_eq_zero_of_row_eq_zero {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {A : matrix n n R} (i : n) (h : ∀ (j : n), A i j = 0) :
A.det = 0

theorem matrix.det_eq_zero_of_column_eq_zero {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {A : matrix n n R} (j : n) (h : ∀ (i : n), A i j = 0) :
A.det = 0

theorem matrix.det_zero_of_row_eq {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {M : matrix n n R} {i j : n} (i_ne_j : i j) (hij : M i = M j) :
M.det = 0

If a matrix has a repeated row, the determinant will be zero.

theorem matrix.det_update_column_add {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) (j : n) (u v : n → R) :
(M.update_column j (u + v)).det = (M.update_column j u).det + (M.update_column j v).det

theorem matrix.det_update_row_add {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) (j : n) (u v : n → R) :
(M.update_row j (u + v)).det = (M.update_row j u).det + (M.update_row j v).det

theorem matrix.det_update_column_smul {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) (j : n) (s : R) (u : n → R) :
(M.update_column j (s u)).det = s * (M.update_column j u).det

theorem matrix.det_update_row_smul {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) (j : n) (s : R) (u : n → R) :
(M.update_row j (s u)).det = s * (M.update_row j u).det

@[simp]
theorem matrix.det_row_multilinear_apply {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (M : matrix n n R) :

def matrix.det_row_multilinear {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :
alternating_map R (n → R) R n

det is an alternating multilinear map over the rows of the matrix.

See also is_basis.det.

Equations
@[simp]
theorem matrix.det_block_diagonal {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] {o : Type u_1} [fintype o] [decidable_eq o] (M : o → matrix n n R) :
(matrix.block_diagonal M).det = ∏ (k : o), (M k).det