Continuous Monoid Homs #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines the space of continuous homomorphisms between two topological groups.
Main definitions #
continuous_monoid_hom A B
: The continuous homomorphismsA →* B
.continuous_add_monoid_hom A B
: The continuous additive homomorphismsA →+ B
.
- to_add_monoid_hom : A →+ B
- continuous_to_fun : continuous self.to_add_monoid_hom.to_fun
The type of continuous additive monoid homomorphisms from A
to B
.
When possible, instead of parametrizing results over (f : continuous_add_monoid_hom A B)
,
you should parametrize over (F : Type*) [continuous_add_monoid_hom_class F A B] (f : F)
.
When you extend this structure, make sure to extend continuous_add_monoid_hom_class
.
Instances for continuous_add_monoid_hom
- continuous_add_monoid_hom.has_sizeof_inst
- continuous_add_monoid_hom.continuous_add_monoid_hom_class
- continuous_add_monoid_hom.has_coe_to_fun
- continuous_add_monoid_hom.inhabited
- continuous_add_monoid_hom.add_comm_group
- continuous_add_monoid_hom.topological_space
- continuous_add_monoid_hom.t2_space
- continuous_add_monoid_hom.topological_add_group
- to_monoid_hom : A →* B
- continuous_to_fun : continuous self.to_monoid_hom.to_fun
The type of continuous monoid homomorphisms from A
to B
.
When possible, instead of parametrizing results over (f : continuous_monoid_hom A B)
,
you should parametrize over (F : Type*) [continuous_monoid_hom_class F A B] (f : F)
.
When you extend this structure, make sure to extend continuous_add_monoid_hom_class
.
Instances for continuous_monoid_hom
- continuous_monoid_hom.has_sizeof_inst
- continuous_monoid_hom.continuous_monoid_hom_class
- continuous_monoid_hom.has_coe_to_fun
- continuous_monoid_hom.inhabited
- continuous_monoid_hom.comm_group
- continuous_monoid_hom.topological_space
- continuous_monoid_hom.t2_space
- continuous_monoid_hom.topological_group
- coe : F → Π (a : A), (λ (_x : A), B) a
- coe_injective' : function.injective continuous_add_monoid_hom_class.coe
- map_add : ∀ (f : F) (x y : A), ⇑f (x + y) = ⇑f x + ⇑f y
- map_zero : ∀ (f : F), ⇑f 0 = 0
- map_continuous : ∀ (f : F), continuous ⇑f
continuous_add_monoid_hom_class F A B
states that F
is a type of continuous additive monoid
homomorphisms.
You should also extend this typeclass when you extend continuous_add_monoid_hom
.
Instances of this typeclass
Instances of other typeclasses for continuous_add_monoid_hom_class
- continuous_add_monoid_hom_class.has_sizeof_inst
- coe : F → Π (a : A), (λ (_x : A), B) a
- coe_injective' : function.injective continuous_monoid_hom_class.coe
- map_mul : ∀ (f : F) (x y : A), ⇑f (x * y) = ⇑f x * ⇑f y
- map_one : ∀ (f : F), ⇑f 1 = 1
- map_continuous : ∀ (f : F), continuous ⇑f
continuous_monoid_hom_class F A B
states that F
is a type of continuous additive monoid
homomorphisms.
You should also extend this typeclass when you extend continuous_monoid_hom
.
Instances of this typeclass
Instances of other typeclasses for continuous_monoid_hom_class
- continuous_monoid_hom_class.has_sizeof_inst
Equations
- continuous_monoid_hom_class.to_continuous_map_class F A B = {coe := continuous_monoid_hom_class.coe _inst_12, coe_injective' := _, map_continuous := _}
Equations
- continuous_add_monoid_hom_class.to_continuous_map_class F A B = {coe := continuous_add_monoid_hom_class.coe _inst_12, coe_injective' := _, map_continuous := _}
Equations
- continuous_monoid_hom.continuous_monoid_hom_class = {coe := λ (f : continuous_monoid_hom A B), f.to_monoid_hom.to_fun, coe_injective' := _, map_mul := _, map_one := _, map_continuous := _}
Equations
- continuous_add_monoid_hom.continuous_add_monoid_hom_class = {coe := λ (f : continuous_add_monoid_hom A B), f.to_add_monoid_hom.to_fun, coe_injective' := _, map_add := _, map_zero := _, map_continuous := _}
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Helper instance for when there's too many metavariables to apply
fun_like.has_coe_to_fun
directly.
Reinterpret a continuous_monoid_hom
as a continuous_map
.
Equations
- f.to_continuous_map = {to_fun := f.to_monoid_hom.to_fun, continuous_to_fun := _}
Reinterpret a continuous_add_monoid_hom
as a continuous_map
.
Equations
- f.to_continuous_map = {to_fun := f.to_add_monoid_hom.to_fun, continuous_to_fun := _}
Construct a continuous_add_monoid_hom
from a continuous
add_monoid_hom
.
Equations
- continuous_add_monoid_hom.mk' f hf = {to_add_monoid_hom := {to_fun := f.to_fun, map_zero' := _, map_add' := _}, continuous_to_fun := hf}
Construct a continuous_monoid_hom
from a continuous
monoid_hom
.
Equations
- continuous_monoid_hom.mk' f hf = {to_monoid_hom := {to_fun := f.to_fun, map_one' := _, map_mul' := _}, continuous_to_fun := hf}
Composition of two continuous homomorphisms.
Equations
Composition of two continuous homomorphisms.
Equations
- g.comp f = continuous_monoid_hom.mk' (g.to_monoid_hom.comp f.to_monoid_hom) _
Product of two continuous homomorphisms on the same space.
Equations
Product of two continuous homomorphisms on the same space.
Equations
- f.prod g = continuous_monoid_hom.mk' (f.to_monoid_hom.prod g.to_monoid_hom) _
Product of two continuous homomorphisms on different spaces.
Equations
- f.prod_map g = continuous_monoid_hom.mk' (f.to_monoid_hom.prod_map g.to_monoid_hom) _
Product of two continuous homomorphisms on different spaces.
Equations
The trivial continuous homomorphism.
Equations
The trivial continuous homomorphism.
Equations
Equations
- continuous_monoid_hom.inhabited A B = {default := continuous_monoid_hom.one A B _inst_7}
Equations
- continuous_add_monoid_hom.inhabited A B = {default := continuous_add_monoid_hom.zero A B _inst_7}
The identity continuous homomorphism.
The identity continuous homomorphism.
Equations
The continuous homomorphism given by projection onto the first factor.
Equations
The continuous homomorphism given by projection onto the first factor.
Equations
The continuous homomorphism given by projection onto the second factor.
Equations
The continuous homomorphism given by projection onto the second factor.
Equations
The continuous homomorphism given by inclusion of the first factor.
Equations
The continuous homomorphism given by inclusion of the first factor.
Equations
The continuous homomorphism given by inclusion of the second factor.
Equations
The continuous homomorphism given by inclusion of the second factor.
Equations
The continuous homomorphism given by the diagonal embedding.
Equations
The continuous homomorphism given by the diagonal embedding.
Equations
The continuous homomorphism given by swapping components.
Equations
The continuous homomorphism given by swapping components.
Equations
The continuous homomorphism given by multiplication.
Equations
The continuous homomorphism given by addition.
The continuous homomorphism given by negation.
The continuous homomorphism given by inversion.
Equations
Coproduct of two continuous homomorphisms to the same space.
Equations
- f.coprod g = (continuous_monoid_hom.mul E).comp (f.prod_map g)
Coproduct of two continuous homomorphisms to the same space.
Equations
- f.coprod g = (continuous_add_monoid_hom.add E).comp (f.sum_map g)
Equations
- continuous_add_monoid_hom.add_comm_group = {add := λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g), add_assoc := _, zero := continuous_add_monoid_hom.zero A E _inst_10, zero_add := _, add_zero := _, nsmul := add_group.nsmul._default (continuous_add_monoid_hom.zero A E) (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_4 continuous_add_monoid_hom.add_comm_group._proof_5, nsmul_zero' := _, nsmul_succ' := _, neg := λ (f : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.neg E).comp f, sub := add_group.sub._default (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_8 (continuous_add_monoid_hom.zero A E) continuous_add_monoid_hom.add_comm_group._proof_9 continuous_add_monoid_hom.add_comm_group._proof_10 (add_group.nsmul._default (continuous_add_monoid_hom.zero A E) (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_4 continuous_add_monoid_hom.add_comm_group._proof_5) continuous_add_monoid_hom.add_comm_group._proof_11 continuous_add_monoid_hom.add_comm_group._proof_12 (λ (f : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.neg E).comp f), sub_eq_add_neg := _, zsmul := add_group.zsmul._default (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_14 (continuous_add_monoid_hom.zero A E) continuous_add_monoid_hom.add_comm_group._proof_15 continuous_add_monoid_hom.add_comm_group._proof_16 (add_group.nsmul._default (continuous_add_monoid_hom.zero A E) (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_4 continuous_add_monoid_hom.add_comm_group._proof_5) continuous_add_monoid_hom.add_comm_group._proof_17 continuous_add_monoid_hom.add_comm_group._proof_18 (λ (f : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.neg E).comp f), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}
Equations
- continuous_monoid_hom.comm_group = {mul := λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g), mul_assoc := _, one := continuous_monoid_hom.one A E _inst_10, one_mul := _, mul_one := _, npow := group.npow._default (continuous_monoid_hom.one A E) (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_4 continuous_monoid_hom.comm_group._proof_5, npow_zero' := _, npow_succ' := _, inv := λ (f : continuous_monoid_hom A E), (continuous_monoid_hom.inv E).comp f, div := group.div._default (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_8 (continuous_monoid_hom.one A E) continuous_monoid_hom.comm_group._proof_9 continuous_monoid_hom.comm_group._proof_10 (group.npow._default (continuous_monoid_hom.one A E) (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_4 continuous_monoid_hom.comm_group._proof_5) continuous_monoid_hom.comm_group._proof_11 continuous_monoid_hom.comm_group._proof_12 (λ (f : continuous_monoid_hom A E), (continuous_monoid_hom.inv E).comp f), div_eq_mul_inv := _, zpow := group.zpow._default (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_14 (continuous_monoid_hom.one A E) continuous_monoid_hom.comm_group._proof_15 continuous_monoid_hom.comm_group._proof_16 (group.npow._default (continuous_monoid_hom.one A E) (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_4 continuous_monoid_hom.comm_group._proof_5) continuous_monoid_hom.comm_group._proof_17 continuous_monoid_hom.comm_group._proof_18 (λ (f : continuous_monoid_hom A E), (continuous_monoid_hom.inv E).comp f), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _, mul_comm := _}
continuous_add_monoid_hom _ f
is a functor.
Equations
- continuous_add_monoid_hom.comp_left E f = {to_add_monoid_hom := {to_fun := λ (g : continuous_add_monoid_hom B E), g.comp f, map_zero' := _, map_add' := _}, continuous_to_fun := _}
continuous_monoid_hom _ f
is a functor.
Equations
- continuous_monoid_hom.comp_left E f = {to_monoid_hom := {to_fun := λ (g : continuous_monoid_hom B E), g.comp f, map_one' := _, map_mul' := _}, continuous_to_fun := _}
continuous_monoid_hom f _
is a functor.
Equations
- continuous_monoid_hom.comp_right A f = {to_monoid_hom := {to_fun := λ (g : continuous_monoid_hom A B), f.comp g, map_one' := _, map_mul' := _}, continuous_to_fun := _}
continuous_add_monoid_hom f _
is a functor.
Equations
- continuous_add_monoid_hom.comp_right A f = {to_add_monoid_hom := {to_fun := λ (g : continuous_add_monoid_hom A B), f.comp g, map_zero' := _, map_add' := _}, continuous_to_fun := _}
The Pontryagin dual of A
is the group of continuous homomorphism A → circle
.
Equations
pontryagin_dual
is a functor.
Equations
continuous_monoid_hom.dual
as a continuous_monoid_hom
.
Equations
- pontryagin_dual.map_hom A E = {to_monoid_hom := {to_fun := pontryagin_dual.map _inst_10, map_one' := _, map_mul' := _}, continuous_to_fun := _}