derivatives of the inverse trigonometric functions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Derivatives of arcsin
and arccos
.
theorem
real.deriv_arcsin_aux
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1) :
has_strict_deriv_at real.arcsin (1 / √ (1 - x ^ 2)) x ∧ cont_diff_at ℝ ⊤ real.arcsin x
theorem
real.has_strict_deriv_at_arcsin
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1) :
has_strict_deriv_at real.arcsin (1 / √ (1 - x ^ 2)) x
theorem
real.has_deriv_at_arcsin
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1) :
has_deriv_at real.arcsin (1 / √ (1 - x ^ 2)) x
theorem
real.cont_diff_at_arcsin
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
{n : ℕ∞} :
cont_diff_at ℝ n real.arcsin x
theorem
real.has_deriv_within_at_arcsin_Ici
{x : ℝ}
(h : x ≠ -1) :
has_deriv_within_at real.arcsin (1 / √ (1 - x ^ 2)) (set.Ici x) x
theorem
real.has_deriv_within_at_arcsin_Iic
{x : ℝ}
(h : x ≠ 1) :
has_deriv_within_at real.arcsin (1 / √ (1 - x ^ 2)) (set.Iic x) x
theorem
real.differentiable_within_at_arcsin_Ici
{x : ℝ} :
differentiable_within_at ℝ real.arcsin (set.Ici x) x ↔ x ≠ -1
theorem
real.differentiable_within_at_arcsin_Iic
{x : ℝ} :
differentiable_within_at ℝ real.arcsin (set.Iic x) x ↔ x ≠ 1
theorem
real.cont_diff_at_arcsin_iff
{x : ℝ}
{n : ℕ∞} :
cont_diff_at ℝ n real.arcsin x ↔ n = 0 ∨ x ≠ -1 ∧ x ≠ 1
theorem
real.has_strict_deriv_at_arccos
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1) :
has_strict_deriv_at real.arccos (-(1 / √ (1 - x ^ 2))) x
theorem
real.has_deriv_at_arccos
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1) :
has_deriv_at real.arccos (-(1 / √ (1 - x ^ 2))) x
theorem
real.cont_diff_at_arccos
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
{n : ℕ∞} :
cont_diff_at ℝ n real.arccos x
theorem
real.has_deriv_within_at_arccos_Ici
{x : ℝ}
(h : x ≠ -1) :
has_deriv_within_at real.arccos (-(1 / √ (1 - x ^ 2))) (set.Ici x) x
theorem
real.has_deriv_within_at_arccos_Iic
{x : ℝ}
(h : x ≠ 1) :
has_deriv_within_at real.arccos (-(1 / √ (1 - x ^ 2))) (set.Iic x) x
theorem
real.differentiable_within_at_arccos_Ici
{x : ℝ} :
differentiable_within_at ℝ real.arccos (set.Ici x) x ↔ x ≠ -1
theorem
real.differentiable_within_at_arccos_Iic
{x : ℝ} :
differentiable_within_at ℝ real.arccos (set.Iic x) x ↔ x ≠ 1
theorem
real.cont_diff_at_arccos_iff
{x : ℝ}
{n : ℕ∞} :
cont_diff_at ℝ n real.arccos x ↔ n = 0 ∨ x ≠ -1 ∧ x ≠ 1