Additively-graded multiplicative structures #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This module provides a set of heterogeneous typeclasses for defining a multiplicative structure
over the sigma type graded_monoid A
such that (*) : A i → A j → A (i + j)
; that is to say, A
forms an additively-graded monoid. The typeclasses are:
graded_monoid.ghas_one A
graded_monoid.ghas_mul A
graded_monoid.gmonoid A
graded_monoid.gcomm_monoid A
With the sigma_graded
locale open, these respectively imbue:
has_one (graded_monoid A)
has_mul (graded_monoid A)
monoid (graded_monoid A)
comm_monoid (graded_monoid A)
the base type A 0
with:
graded_monoid.grade_zero.has_one
graded_monoid.grade_zero.has_mul
graded_monoid.grade_zero.monoid
graded_monoid.grade_zero.comm_monoid
and the i
th grade A i
with A 0
-actions (•
) defined as left-multiplication:
- (nothing)
graded_monoid.grade_zero.has_smul (A 0)
graded_monoid.grade_zero.mul_action (A 0)
- (nothing)
For now, these typeclasses are primarily used in the construction of direct_sum.ring
and the rest
of that file.
Dependent graded products #
This also introduces list.dprod
, which takes the (possibly non-commutative) product of a list
of graded elements of type A i
. This definition primarily exist to allow graded_monoid.mk
and direct_sum.of
to be pulled outside a product, such as in graded_monoid.mk_list_dprod
and
direct_sum.of_list_dprod
.
Internally graded monoids #
In addition to the above typeclasses, in the most frequent case when A
is an indexed collection of
set_like
subobjects (such as add_submonoid
s, add_subgroup
s, or submodule
s), this file
provides the Prop
typeclasses:
set_like.has_graded_one A
(which provides the obviousgraded_monoid.ghas_one A
instance)set_like.has_graded_mul A
(which provides the obviousgraded_monoid.ghas_mul A
instance)set_like.graded_monoid A
(which provides the obviousgraded_monoid.gmonoid A
andgraded_monoid.gcomm_monoid A
instances)
which respectively provide the API lemmas
set_like.one_mem_graded
set_like.mul_mem_graded
set_like.pow_mem_graded
,set_like.list_prod_map_mem_graded
Strictly this last class is unecessary as it has no fields not present in its parents, but it is
included for convenience. Note that there is no need for set_like.graded_ring
or similar, as all
the information it would contain is already supplied by graded_monoid
when A
is a collection
of objects satisfying add_submonoid_class
such as submodule
s. These constructions are explored
in algebra.direct_sum.internal
.
This file also defines:
set_like.is_homogeneous A
(which says thata
is homogeneous iffa ∈ A i
for somei : ι
)set_like.homogeneous_submonoid A
, which is, as the name suggests, the submonoid consisting of all the homogeneous elements.
tags #
graded monoid
A type alias of sigma types for graded monoids.
Equations
- graded_monoid A = sigma A
Equations
Construct an element of a graded monoid.
Equations
Typeclasses #
- one : A 0
A graded version of has_one
, which must be of grade 0.
Instances of this typeclass
Instances of other typeclasses for graded_monoid.ghas_one
- graded_monoid.ghas_one.has_sizeof_inst
ghas_one
implies has_one (graded_monoid A)
Equations
- graded_monoid.ghas_one.to_has_one A = {one := ⟨0, graded_monoid.ghas_one.one _inst_2⟩}
A graded version of has_mul
. Multiplication combines grades additively, like
add_monoid_algebra
.
Instances of this typeclass
Instances of other typeclasses for graded_monoid.ghas_mul
- graded_monoid.ghas_mul.has_sizeof_inst
ghas_mul
implies has_mul (graded_monoid A)
.
Equations
- graded_monoid.ghas_mul.to_has_mul A = {mul := λ (x y : graded_monoid A), ⟨x.fst + y.fst, graded_monoid.ghas_mul.mul x.snd y.snd⟩}
A default implementation of power on a graded monoid, like npow_rec
.
gmonoid.gnpow
should be used instead.
Equations
- mul : Π {i j : ι}, A i → A j → A (i + j)
- one : A 0
- one_mul : ∀ (a : graded_monoid A), 1 * a = a
- mul_one : ∀ (a : graded_monoid A), a * 1 = a
- mul_assoc : ∀ (a b c : graded_monoid A), a * b * c = a * (b * c)
- gnpow : Π (n : ℕ) {i : ι}, A i → A (n • i)
- gnpow_zero' : (∀ (a : graded_monoid A), graded_monoid.mk (0 • a.fst) (graded_monoid.gmonoid.gnpow 0 a.snd) = 1) . "apply_gnpow_rec_zero_tac"
- gnpow_succ' : (∀ (n : ℕ) (a : graded_monoid A), graded_monoid.mk (n.succ • a.fst) (graded_monoid.gmonoid.gnpow n.succ a.snd) = a * ⟨n • a.fst, graded_monoid.gmonoid.gnpow n a.snd⟩) . "apply_gnpow_rec_succ_tac"
A graded version of monoid
.
Like monoid.npow
, this has an optional gmonoid.gnpow
field to allow definitional control of
natural powers of a graded monoid.
Instances of this typeclass
Instances of other typeclasses for graded_monoid.gmonoid
- graded_monoid.gmonoid.has_sizeof_inst
gmonoid
implies a monoid (graded_monoid A)
.
Equations
- graded_monoid.gmonoid.to_monoid A = {mul := has_mul.mul (graded_monoid.ghas_mul.to_has_mul A), mul_assoc := _, one := 1, one_mul := _, mul_one := _, npow := λ (n : ℕ) (a : graded_monoid A), graded_monoid.mk (n • a.fst) (graded_monoid.gmonoid.gnpow n a.snd), npow_zero' := _, npow_succ' := _}
- mul : Π {i j : ι}, A i → A j → A (i + j)
- one : A 0
- one_mul : ∀ (a : graded_monoid A), 1 * a = a
- mul_one : ∀ (a : graded_monoid A), a * 1 = a
- mul_assoc : ∀ (a b c : graded_monoid A), a * b * c = a * (b * c)
- gnpow : Π (n : ℕ) {i : ι}, A i → A (n • i)
- gnpow_zero' : (∀ (a : graded_monoid A), graded_monoid.mk (0 • a.fst) (graded_monoid.gcomm_monoid.gnpow 0 a.snd) = 1) . "apply_gnpow_rec_zero_tac"
- gnpow_succ' : (∀ (n : ℕ) (a : graded_monoid A), graded_monoid.mk (n.succ • a.fst) (graded_monoid.gcomm_monoid.gnpow n.succ a.snd) = a * ⟨n • a.fst, graded_monoid.gcomm_monoid.gnpow n a.snd⟩) . "apply_gnpow_rec_succ_tac"
- mul_comm : ∀ (a b : graded_monoid A), a * b = b * a
A graded version of comm_monoid
.
Instances of this typeclass
Instances of other typeclasses for graded_monoid.gcomm_monoid
- graded_monoid.gcomm_monoid.has_sizeof_inst
gcomm_monoid
implies a comm_monoid (graded_monoid A)
, although this is only used as an
instance locally to define notation in gmonoid
and similar typeclasses.
Equations
- graded_monoid.gcomm_monoid.to_comm_monoid A = {mul := monoid.mul (graded_monoid.gmonoid.to_monoid A), mul_assoc := _, one := monoid.one (graded_monoid.gmonoid.to_monoid A), one_mul := _, mul_one := _, npow := monoid.npow (graded_monoid.gmonoid.to_monoid A), npow_zero' := _, npow_succ' := _, mul_comm := _}
Instances for A 0
#
The various g*
instances are enough to promote the add_comm_monoid (A 0)
structure to various
types of multiplicative structure.
1 : A 0
is the value provided in ghas_one.one
.
Equations
- graded_monoid.grade_zero.has_one A = {one := graded_monoid.ghas_one.one _inst_2}
(•) : A 0 → A i → A i
is the value provided in graded_monoid.ghas_mul.mul
, composed with
an eq.rec
to turn A (0 + i)
into A i
.
Equations
- graded_monoid.grade_zero.has_smul A i = {smul := λ (x : A 0) (y : A i), eq.rec (graded_monoid.ghas_mul.mul x y) _}
(*) : A 0 → A 0 → A 0
is the value provided in graded_monoid.ghas_mul.mul
, composed with
an eq.rec
to turn A (0 + 0)
into A 0
.
Equations
Equations
- graded_monoid.nat.has_pow A = {pow := λ (x : A 0) (n : ℕ), eq.rec (graded_monoid.gmonoid.gnpow n x) _}
The monoid
structure derived from gmonoid A
.
Equations
The comm_monoid
structure derived from gcomm_monoid A
.
Equations
graded_monoid.mk 0
is a monoid_hom
, using the graded_monoid.grade_zero.monoid
structure.
Equations
- graded_monoid.mk_zero_monoid_hom A = {to_fun := graded_monoid.mk 0, map_one' := _, map_mul' := _}
Each grade A i
derives a A 0
-action structure from gmonoid A
.
Equations
- graded_monoid.grade_zero.mul_action A = let _inst : mul_action (A 0) (graded_monoid A) := mul_action.comp_hom (graded_monoid A) (graded_monoid.mk_zero_monoid_hom A) in function.injective.mul_action (graded_monoid.mk i) _ _
Dependent products of graded elements #
The index used by list.dprod
. Propositionally this is equal to (l.map fι).sum
, but
definitionally it needs to have a different form to avoid introducing eq.rec
s in list.dprod
.
Equations
- l.dprod_index fι = list.foldr (λ (i : α) (b : ι), fι i + b) 0 l
A dependent product for graded monoids represented by the indexed family of types A i
.
This is a dependent version of (l.map fA).prod
.
For a list l : list α
, this computes the product of fA a
over a
, where each fA
is of type
A (fι a)
.
Equations
- l.dprod fι fA = l.foldr_rec_on (λ (i : α) (b : ι), fι i + b) 0 graded_monoid.ghas_one.one (λ (i : ι) (x : A i) (a : α) (ha : a ∈ l), graded_monoid.ghas_mul.mul (fA a) x)
A variant of graded_monoid.mk_list_dprod
for rewriting in the other direction.
Concrete instances #
Equations
- has_one.ghas_one ι = {one := 1}
Equations
- has_mul.ghas_mul ι = {mul := λ (i j : ι), has_mul.mul}
If all grades are the same type and themselves form a monoid, then there is a trivial grading structure.
Equations
- monoid.gmonoid ι = {mul := graded_monoid.ghas_mul.mul (has_mul.ghas_mul ι), one := graded_monoid.ghas_one.one (has_one.ghas_one ι), one_mul := _, mul_one := _, mul_assoc := _, gnpow := λ (n : ℕ) (i : ι) (a : R), a ^ n, gnpow_zero' := _, gnpow_succ' := _}
If all grades are the same type and themselves form a commutative monoid, then there is a trivial grading structure.
Equations
- comm_monoid.gcomm_monoid ι = {mul := graded_monoid.gmonoid.mul (monoid.gmonoid ι), one := graded_monoid.gmonoid.one (monoid.gmonoid ι), one_mul := _, mul_one := _, mul_assoc := _, gnpow := graded_monoid.gmonoid.gnpow (monoid.gmonoid ι), gnpow_zero' := _, gnpow_succ' := _, mul_comm := _}
Shorthands for creating instance of the above typeclasses for collections of subobjects #
- one_mem : 1 ∈ A 0
A version of graded_monoid.ghas_one
for internally graded objects.
Instances of this typeclass
Equations
- set_like.ghas_one A = {one := ⟨1, _⟩}
A version of graded_monoid.ghas_one
for internally graded objects.
Instances of this typeclass
A version of graded_monoid.gmonoid
for internally graded objects.
Instances of this typeclass
- graded_ring.to_graded_monoid
- submodule.nat_power_graded_monoid
- mv_polynomial.is_weighted_homogeneous.weighted_homogeneous_submodule.gcomm_monoid
- mv_polynomial.is_homogeneous.homogeneous_submodule.gcomm_semiring
- add_monoid_algebra.grade_by.graded_monoid
- add_monoid_algebra.grade.graded_monoid
- clifford_algebra.even_odd.graded_monoid
Build a gmonoid
instance for a collection of subobjects.
Equations
- set_like.gmonoid A = {mul := graded_monoid.ghas_mul.mul (set_like.ghas_mul A), one := graded_monoid.ghas_one.one (set_like.ghas_one A), one_mul := _, mul_one := _, mul_assoc := _, gnpow := λ (n : ℕ) (i : ι) (a : ↥(A i)), ⟨↑a ^ n, _⟩, gnpow_zero' := _, gnpow_succ' := _}
Build a gcomm_monoid
instance for a collection of subobjects.
Equations
- set_like.gcomm_monoid A = {mul := graded_monoid.gmonoid.mul (set_like.gmonoid A), one := graded_monoid.gmonoid.one (set_like.gmonoid A), one_mul := _, mul_one := _, mul_assoc := _, gnpow := graded_monoid.gmonoid.gnpow (set_like.gmonoid A), gnpow_zero' := _, gnpow_succ' := _, mul_comm := _}
Coercing a dependent product of subtypes is the same as taking the regular product of the coercions.
A version of list.coe_dprod_set_like
with subtype.mk
.
When A
is a set_like.graded_monoid A
, then the homogeneous elements forms a submonoid.
Equations
- set_like.homogeneous_submonoid A = {carrier := {a : R | set_like.is_homogeneous A a}, mul_mem' := _, one_mem' := _}