mathlib3 documentation

analysis.calculus.deriv.inv

Derivatives of x ↦ x⁻¹ and f x / g x #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

In this file we prove (x⁻¹)' = -1 / x ^ 2, ((f x)⁻¹)' = -f' x / (f x) ^ 2, and (f x / g x)' = (f' x * g x - f x * g' x) / (g x) ^ 2 for different notions of derivative.

For a more detailed overview of one-dimensional derivatives in mathlib, see the module docstring of analysis/calculus/deriv/basic.

Keywords #

derivative

Derivative of x ↦ x⁻¹ #

theorem has_strict_deriv_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} (hx : x 0) :
theorem has_deriv_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} (x_ne_zero : x 0) :
has_deriv_at (λ (y : 𝕜), y⁻¹) (-(x ^ 2)⁻¹) x
theorem has_deriv_within_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} (x_ne_zero : x 0) (s : set 𝕜) :
has_deriv_within_at (λ (x : 𝕜), x⁻¹) (-(x ^ 2)⁻¹) s x
theorem differentiable_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} :
differentiable_at 𝕜 (λ (x : 𝕜), x⁻¹) x x 0
theorem differentiable_within_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} (x_ne_zero : x 0) :
differentiable_within_at 𝕜 (λ (x : 𝕜), x⁻¹) s x
theorem differentiable_on_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] :
differentiable_on 𝕜 (λ (x : 𝕜), x⁻¹) {x : 𝕜 | x 0}
theorem deriv_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} :
deriv (λ (x : 𝕜), x⁻¹) x = -(x ^ 2)⁻¹
@[simp]
theorem deriv_inv' {𝕜 : Type u} [nontrivially_normed_field 𝕜] :
deriv (λ (x : 𝕜), x⁻¹) = λ (x : 𝕜), -(x ^ 2)⁻¹
theorem deriv_within_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} (x_ne_zero : x 0) (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λ (x : 𝕜), x⁻¹) s x = -(x ^ 2)⁻¹
theorem has_fderiv_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} (x_ne_zero : x 0) :
has_fderiv_at (λ (x : 𝕜), x⁻¹) (1.smul_right (-(x ^ 2)⁻¹)) x
theorem has_fderiv_within_at_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} (x_ne_zero : x 0) :
has_fderiv_within_at (λ (x : 𝕜), x⁻¹) (1.smul_right (-(x ^ 2)⁻¹)) s x
theorem fderiv_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} :
fderiv 𝕜 (λ (x : 𝕜), x⁻¹) x = 1.smul_right (-(x ^ 2)⁻¹)
theorem fderiv_within_inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} (x_ne_zero : x 0) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λ (x : 𝕜), x⁻¹) s x = 1.smul_right (-(x ^ 2)⁻¹)
theorem has_deriv_within_at.inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} {c : 𝕜 𝕜} {c' : 𝕜} (hc : has_deriv_within_at c c' s x) (hx : c x 0) :
has_deriv_within_at (λ (y : 𝕜), (c y)⁻¹) (-c' / c x ^ 2) s x
theorem has_deriv_at.inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {c : 𝕜 𝕜} {c' : 𝕜} (hc : has_deriv_at c c' x) (hx : c x 0) :
has_deriv_at (λ (y : 𝕜), (c y)⁻¹) (-c' / c x ^ 2) x
theorem differentiable_within_at.inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {E : Type w} [normed_add_comm_group E] [normed_space 𝕜 E] {h : E 𝕜} {z : E} {S : set E} (hf : differentiable_within_at 𝕜 h S z) (hz : h z 0) :
differentiable_within_at 𝕜 (λ (x : E), (h x)⁻¹) S z
@[simp]
theorem differentiable_at.inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {E : Type w} [normed_add_comm_group E] [normed_space 𝕜 E] {h : E 𝕜} {z : E} (hf : differentiable_at 𝕜 h z) (hz : h z 0) :
differentiable_at 𝕜 (λ (x : E), (h x)⁻¹) z
theorem differentiable_on.inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {E : Type w} [normed_add_comm_group E] [normed_space 𝕜 E] {h : E 𝕜} {S : set E} (hf : differentiable_on 𝕜 h S) (hz : (x : E), x S h x 0) :
differentiable_on 𝕜 (λ (x : E), (h x)⁻¹) S
@[simp]
theorem differentiable.inv {𝕜 : Type u} [nontrivially_normed_field 𝕜] {E : Type w} [normed_add_comm_group E] [normed_space 𝕜 E] {h : E 𝕜} (hf : differentiable 𝕜 h) (hz : (x : E), h x 0) :
differentiable 𝕜 (λ (x : E), (h x)⁻¹)
theorem deriv_within_inv' {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} {c : 𝕜 𝕜} (hc : differentiable_within_at 𝕜 c s x) (hx : c x 0) (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λ (x : 𝕜), (c x)⁻¹) s x = -deriv_within c s x / c x ^ 2
@[simp]
theorem deriv_inv'' {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {c : 𝕜 𝕜} (hc : differentiable_at 𝕜 c x) (hx : c x 0) :
deriv (λ (x : 𝕜), (c x)⁻¹) x = -deriv c x / c x ^ 2

Derivative of x ↦ c x / d x #

theorem has_deriv_within_at.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} {c' d' : 𝕜'} (hc : has_deriv_within_at c c' s x) (hd : has_deriv_within_at d d' s x) (hx : d x 0) :
has_deriv_within_at (λ (y : 𝕜), c y / d y) ((c' * d x - c x * d') / d x ^ 2) s x
theorem has_strict_deriv_at.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} {c' d' : 𝕜'} (hc : has_strict_deriv_at c c' x) (hd : has_strict_deriv_at d d' x) (hx : d x 0) :
has_strict_deriv_at (λ (y : 𝕜), c y / d y) ((c' * d x - c x * d') / d x ^ 2) x
theorem has_deriv_at.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} {c' d' : 𝕜'} (hc : has_deriv_at c c' x) (hd : has_deriv_at d d' x) (hx : d x 0) :
has_deriv_at (λ (y : 𝕜), c y / d y) ((c' * d x - c x * d') / d x ^ 2) x
theorem differentiable_within_at.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) (hx : d x 0) :
differentiable_within_at 𝕜 (λ (x : 𝕜), c x / d x) s x
@[simp]
theorem differentiable_at.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) (hx : d x 0) :
differentiable_at 𝕜 (λ (x : 𝕜), c x / d x) x
theorem differentiable_on.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {s : set 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} (hc : differentiable_on 𝕜 c s) (hd : differentiable_on 𝕜 d s) (hx : (x : 𝕜), x s d x 0) :
differentiable_on 𝕜 (λ (x : 𝕜), c x / d x) s
@[simp]
theorem differentiable.div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} (hc : differentiable 𝕜 c) (hd : differentiable 𝕜 d) (hx : (x : 𝕜), d x 0) :
differentiable 𝕜 (λ (x : 𝕜), c x / d x)
theorem deriv_within_div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {s : set 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) (hx : d x 0) (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λ (x : 𝕜), c x / d x) s x = (deriv_within c s x * d x - c x * deriv_within d s x) / d x ^ 2
@[simp]
theorem deriv_div {𝕜 : Type u} [nontrivially_normed_field 𝕜] {x : 𝕜} {𝕜' : Type u_1} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] {c d : 𝕜 𝕜'} (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) (hx : d x 0) :
deriv (λ (x : 𝕜), c x / d x) x = (deriv c x * d x - c x * deriv d x) / d x ^ 2