Sigma instances for additive and multiplicative actions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines instances for arbitrary sum of additive and multiplicative actions.
See also #
group_theory.group_action.pi
group_theory.group_action.prod
group_theory.group_action.sum
@[protected]
theorem
sigma.has_faithful_vadd'
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[Π (i : ι), has_vadd M (α i)]
(i : ι)
[has_faithful_vadd M (α i)] :
has_faithful_vadd M (Σ (i : ι), α i)
This is not an instance because i
becomes a metavariable.
@[protected]
theorem
sigma.has_faithful_smul'
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[Π (i : ι), has_smul M (α i)]
(i : ι)
[has_faithful_smul M (α i)] :
has_faithful_smul M (Σ (i : ι), α i)
This is not an instance because i
becomes a metavariable.
@[protected, instance]
def
sigma.has_faithful_smul
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[Π (i : ι), has_smul M (α i)]
[nonempty ι]
[∀ (i : ι), has_faithful_smul M (α i)] :
has_faithful_smul M (Σ (i : ι), α i)
@[protected, instance]
def
sigma.has_faithful_vadd
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
[Π (i : ι), has_vadd M (α i)]
[nonempty ι]
[∀ (i : ι), has_faithful_vadd M (α i)] :
has_faithful_vadd M (Σ (i : ι), α i)
@[protected, instance]
def
sigma.add_action
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
{m : add_monoid M}
[Π (i : ι), add_action M (α i)] :
add_action M (Σ (i : ι), α i)
Equations
- sigma.add_action = {to_has_vadd := sigma.has_vadd (λ (i : ι), add_action.to_has_vadd), zero_vadd := _, add_vadd := _}
@[protected, instance]
def
sigma.mul_action
{ι : Type u_1}
{M : Type u_2}
{α : ι → Type u_4}
{m : monoid M}
[Π (i : ι), mul_action M (α i)] :
mul_action M (Σ (i : ι), α i)
Equations
- sigma.mul_action = {to_has_smul := sigma.has_smul (λ (i : ι), mul_action.to_has_smul), one_smul := _, mul_smul := _}