Real logarithm base b
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define real.logb
to be the logarithm of a real number in a given base b
. We
define this as the division of the natural logarithms of the argument and the base, so that we have
a globally defined function with logb b 0 = 0
, logb b (-x) = logb b x
logb 0 x = 0
and
logb (-b) x = logb b x
.
We prove some basic properties of this function and its relation to rpow
.
Tags #
logarithm, continuity
theorem
real.surj_on_logb
{b : ℝ}
(b_pos : 0 < b)
(b_ne_one : b ≠ 1) :
set.surj_on (real.logb b) (set.Ioi 0) set.univ
theorem
real.surj_on_logb'
{b : ℝ}
(b_pos : 0 < b)
(b_ne_one : b ≠ 1) :
set.surj_on (real.logb b) (set.Iio 0) set.univ
theorem
real.strict_anti_on_logb_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1) :
strict_anti_on (real.logb b) (set.Ioi 0)
theorem
real.strict_mono_on_logb_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1) :
strict_mono_on (real.logb b) (set.Iio 0)
theorem
real.logb_inj_on_pos_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1) :
set.inj_on (real.logb b) (set.Ioi 0)