The alternating face map complex of a simplicial object in a preadditive category #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We construct the alternating face map complex, as a
functor alternating_face_map_complex : simplicial_object C ⥤ chain_complex C ℕ
for any preadditive category C
. For any simplicial object X
in C
,
this is the homological complex ... → X_2 → X_1 → X_0
where the differentials are alternating sums of faces.
The dual version alternating_coface_map_complex : cosimplicial_object C ⥤ cochain_complex C ℕ
is also constructed.
We also construct the natural transformation
inclusion_of_Moore_complex : normalized_Moore_complex A ⟶ alternating_face_map_complex A
when A
is an abelian category.
References #
Construction of the alternating face map complex #
The differential on the alternating face map complex is the alternate sum of the face maps
Equations
- algebraic_topology.alternating_face_map_complex.obj_d X n = finset.univ.sum (λ (i : fin (n + 2)), (-1) ^ ↑i • X.δ i)
The chain complex relation d ≫ d
#
Construction of the alternating face map complex functor #
The alternating face map complex, on objects
Equations
The alternating face map complex, on morphisms
Equations
- algebraic_topology.alternating_face_map_complex.map f = chain_complex.of_hom (λ (n : ℕ), X.obj (opposite.op (simplex_category.mk n))) (algebraic_topology.alternating_face_map_complex.obj_d X) _ (λ (n : ℕ), Y.obj (opposite.op (simplex_category.mk n))) (algebraic_topology.alternating_face_map_complex.obj_d Y) _ (λ (n : ℕ), f.app (opposite.op (simplex_category.mk n))) _
The alternating face map complex, as a functor
Equations
- algebraic_topology.alternating_face_map_complex C = {obj := algebraic_topology.alternating_face_map_complex.obj _inst_2, map := λ (X Y : category_theory.simplicial_object C) (f : X ⟶ Y), algebraic_topology.alternating_face_map_complex.map f, map_id' := _, map_comp' := _}
The natural transformation which gives the augmentation of the alternating face map complex attached to an augmented simplicial object.
Equations
- algebraic_topology.alternating_face_map_complex.ε = {app := λ (X : category_theory.simplicial_object.augmented C), (((category_theory.simplicial_object.augmented.drop ⋙ algebraic_topology.alternating_face_map_complex C).obj X).to_single₀_equiv (category_theory.simplicial_object.augmented.point.obj X)).inv_fun ⟨X.hom.app (opposite.op (simplex_category.mk 0)), _⟩, naturality' := _}
Construction of the natural inclusion of the normalized Moore complex #
The inclusion map of the Moore complex in the alternating face map complex
Equations
- algebraic_topology.inclusion_of_Moore_complex_map X = chain_complex.of_hom (λ (n : ℕ), ↑(algebraic_topology.normalized_Moore_complex.obj_X X n)) (λ (j : ℕ), algebraic_topology.normalized_Moore_complex.obj_d X j) _ (λ (n : ℕ), X.obj (opposite.op (simplex_category.mk n))) (λ (j : ℕ), algebraic_topology.alternating_face_map_complex.obj_d X j) _ (λ (n : ℕ), (algebraic_topology.normalized_Moore_complex.obj_X X n).arrow) _
Instances for algebraic_topology.inclusion_of_Moore_complex_map
The inclusion map of the Moore complex in the alternating face map complex, as a natural transformation
Equations
The differential on the alternating coface map complex is the alternate sum of the coface maps
Equations
- algebraic_topology.alternating_coface_map_complex.obj_d X n = finset.univ.sum (λ (i : fin (n + 2)), (-1) ^ ↑i • X.δ i)
The alternating coface map complex, on objects
Equations
The alternating face map complex, on morphisms
Equations
- algebraic_topology.alternating_coface_map_complex.map f = cochain_complex.of_hom (λ (n : ℕ), X.obj (simplex_category.mk n)) (algebraic_topology.alternating_coface_map_complex.obj_d X) _ (λ (n : ℕ), Y.obj (simplex_category.mk n)) (algebraic_topology.alternating_coface_map_complex.obj_d Y) _ (λ (n : ℕ), f.app (simplex_category.mk n)) _
The alternating coface map complex, as a functor
Equations
- algebraic_topology.alternating_coface_map_complex C = {obj := algebraic_topology.alternating_coface_map_complex.obj _inst_2, map := λ (X Y : category_theory.cosimplicial_object C) (f : X ⟶ Y), algebraic_topology.alternating_coface_map_complex.map f, map_id' := _, map_comp' := _}