Measure-theoretic results about the additive circle #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The file is a place to collect measure-theoretic results about the additive circle.
Main definitions: #
add_circle.closed_ball_ae_eq_ball
: open and closed balls in the additive circle are almost equaladd_circle.is_add_fundamental_domain_of_ae_ball
: a ball is a fundamental domain for rational angle rotation in the additive circle
theorem
add_circle.is_add_fundamental_domain_of_ae_ball
{T : ℝ}
[hT : fact (0 < T)]
(I : set (add_circle T))
(u x : add_circle T)
(hu : is_of_fin_add_order u)
(hI : I =ᵐ[measure_theory.measure_space.volume] metric.ball x (T / (2 * ↑(add_order_of u)))) :
Let G
be the subgroup of add_circle T
generated by a point u
of finite order n : ℕ
. Then
any set I
that is almost equal to a ball of radius T / 2n
is a fundamental domain for the action
of G
on add_circle T
by left addition.
theorem
add_circle.volume_of_add_preimage_eq
{T : ℝ}
[hT : fact (0 < T)]
(s I : set (add_circle T))
(u x : add_circle T)
(hu : is_of_fin_add_order u)
(hs : u +ᵥ s =ᵐ[measure_theory.measure_space.volume] s)
(hI : I =ᵐ[measure_theory.measure_space.volume] metric.ball x (T / (2 * ↑(add_order_of u)))) :