fintype instance for set α
, when α
is a fintype #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[protected, instance]
Equations
- finset.fintype = {elems := finset.univ.powerset, complete := _}
@[simp]
theorem
fintype.card_finset
{α : Type u_1}
[fintype α] :
fintype.card (finset α) = 2 ^ fintype.card α
@[simp]
@[simp]
theorem
finset.powerset_eq_univ
{α : Type u_1}
[fintype α]
{s : finset α} :
s.powerset = finset.univ ↔ s = finset.univ
theorem
finset.mem_powerset_len_univ_iff
{α : Type u_1}
[fintype α]
{s : finset α}
{k : ℕ} :
s ∈ finset.powerset_len k finset.univ ↔ s.card = k
@[simp]
theorem
finset.univ_filter_card_eq
(α : Type u_1)
[fintype α]
(k : ℕ) :
finset.filter (λ (s : finset α), s.card = k) finset.univ = finset.powerset_len k finset.univ
@[simp]
theorem
fintype.card_finset_len
{α : Type u_1}
[fintype α]
(k : ℕ) :
fintype.card {s // s.card = k} = (fintype.card α).choose k
@[protected, instance]
Equations
- set.fintype = {elems := finset.map {to_fun := coe coe_to_lift, inj' := _} finset.univ.powerset, complete := _}
@[simp]