mathlib3 documentation

linear_algebra.quadratic_form.dual

Quadratic form structures related to module.dual #

Main definitions #

def bilin_form.dual_prod (R : Type u_1) (M : Type u_2) [comm_semiring R] [add_comm_monoid M] [module R M] :

The symmetric bilinear form on module.dual R M × M defined as B (f, x) (g, y) = f y + g x.

Equations
@[simp]
theorem bilin_form.dual_prod_apply (R : Type u_1) (M : Type u_2) [comm_semiring R] [add_comm_monoid M] [module R M] (x y : module.dual R M × M) :

The quadratic form on module.dual R M × M defined as Q (f, x) = f x.

Equations
@[simp]
theorem quadratic_form.dual_prod_apply (R : Type u_1) (M : Type u_2) [comm_semiring R] [add_comm_monoid M] [module R M] (p : module.dual R M × M) :

Any module isomorphism induces a quadratic isomorphism between the corresponding dual_prod.

Equations
def quadratic_form.to_dual_prod {R : Type u_1} {M : Type u_2} [comm_ring R] [add_comm_group M] [module R M] (Q : quadratic_form R M) [invertible 2] :

The isometry sending (Q.prod $ -Q) to (quadratic_form.dual_prod R M).

This is σ from Proposition 4.8, page 84 of Hermitian K-Theory and Geometric Applications; though we swap the order of the pairs.

Equations
theorem quadratic_form.to_dual_prod_isometry {R : Type u_1} {M : Type u_2} [comm_ring R] [add_comm_group M] [module R M] [invertible 2] (Q : quadratic_form R M) (x : M × M) :