The arctan
function. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Inequalities, derivatives,
and real.tan
as a local_homeomorph
between (-(π / 2), π / 2)
and the whole line.
@[continuity]
real.tan
as an order_iso
between (-(π / 2), π / 2)
and ℝ
.
Equations
- real.tan_order_iso = (strict_mono_on.order_iso real.tan (set.Ioo (-(real.pi / 2)) (real.pi / 2)) real.strict_mono_on_tan).trans ((order_iso.set_congr (real.tan '' set.Ioo (-(real.pi / 2)) (real.pi / 2)) set.univ real.image_tan_Ioo).trans order_iso.set.univ)
Inverse of the tan
function, returns values in the range -π / 2 < arctan x
and
arctan x < π / 2
Equations
- real.arctan x = ↑(⇑(real.tan_order_iso.symm) x)
theorem
real.arcsin_eq_arctan
{x : ℝ}
(h : x ∈ set.Ioo (-1) 1) :
real.arcsin x = real.arctan (x / √ (1 - x ^ 2))
real.tan
as a local_homeomorph
between (-(π / 2), π / 2)
and the whole line.
Equations
- real.tan_local_homeomorph = {to_local_equiv := {to_fun := real.tan, inv_fun := real.arctan, source := set.Ioo (-(real.pi / 2)) (real.pi / 2), target := set.univ ℝ, map_source' := real.tan_local_homeomorph._proof_1, map_target' := real.tan_local_homeomorph._proof_2, left_inv' := real.tan_local_homeomorph._proof_3, right_inv' := real.tan_local_homeomorph._proof_4}, open_source := real.tan_local_homeomorph._proof_5, open_target := real.tan_local_homeomorph._proof_6, continuous_to_fun := real.continuous_on_tan_Ioo, continuous_inv_fun := real.tan_local_homeomorph._proof_7}
@[simp]