mathlib3 documentation

measure_theory.function.conditional_expectation.condexp_L1

Conditional expectation in L1 #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file contains two more steps of the construction of the conditional expectation, which is completed in measure_theory.function.conditional_expectation.basic. See that file for a description of the full process.

The contitional expectation of an function is defined in measure_theory.function.conditional_expectation.condexp_L2. In this file, we perform two steps.

Main definitions #

Conditional expectation of an indicator as a continuous linear map. #

The goal of this section is to build condexp_ind (hm : m ≤ m0) (μ : measure α) (s : set s) : G →L[ℝ] α →₁[μ] G, which takes x : G to the conditional expectation of the indicator of the set s with value x, seen as an element of α →₁[μ] G.

noncomputable def measure_theory.condexp_ind_L1_fin {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] (hm : m m0) [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (hμs : μ s ) (x : G) :

Conditional expectation of the indicator of a measurable set with finite measure, as a function in L1.

Equations
theorem measure_theory.condexp_ind_L1_fin_add {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (hμs : μ s ) (x y : G) :
theorem measure_theory.condexp_ind_L1_fin_smul {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (hμs : μ s ) (c : ) (x : G) :
theorem measure_theory.condexp_ind_L1_fin_smul' {α : Type u_1} {F : Type u_3} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group F] [normed_space 𝕜 F] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] [normed_space F] [smul_comm_class 𝕜 F] (hs : measurable_set s) (hμs : μ s ) (c : 𝕜) (x : F) :
theorem measure_theory.norm_condexp_ind_L1_fin_le {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (hμs : μ s ) (x : G) :
theorem measure_theory.condexp_ind_L1_fin_disjoint_union {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (x : G) :
noncomputable def measure_theory.condexp_ind_L1 {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] [normed_space G] {m m0 : measurable_space α} (hm : m m0) (μ : measure_theory.measure α) (s : set α) [measure_theory.sigma_finite (μ.trim hm)] (x : G) :

Conditional expectation of the indicator of a set, as a function in L1. Its value for sets which are not both measurable and of finite measure is not used: we set it to 0.

Equations
theorem measure_theory.condexp_ind_L1_of_measure_eq_top {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hμs : μ s = ) (x : G) :
theorem measure_theory.condexp_ind_L1_smul {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (c : ) (x : G) :
theorem measure_theory.condexp_ind_L1_smul' {α : Type u_1} {F : Type u_3} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group F] [normed_space 𝕜 F] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] [normed_space F] [smul_comm_class 𝕜 F] (c : 𝕜) (x : F) :
theorem measure_theory.condexp_ind_L1_disjoint_union {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (x : G) :
noncomputable def measure_theory.condexp_ind {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] [normed_space G] {m m0 : measurable_space α} (hm : m m0) (μ : measure_theory.measure α) [measure_theory.sigma_finite (μ.trim hm)] (s : set α) :

Conditional expectation of the indicator of a set, as a linear map from G to L1.

Equations
theorem measure_theory.condexp_ind_smul' {α : Type u_1} {F : Type u_3} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group F] [normed_space 𝕜 F] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] [normed_space F] [smul_comm_class 𝕜 F] (c : 𝕜) (x : F) :
theorem measure_theory.condexp_ind_disjoint_union_apply {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (x : G) :
theorem measure_theory.condexp_ind_disjoint_union {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} [normed_space G] {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) :
theorem measure_theory.set_integral_condexp_ind {α : Type u_1} {G' : Type u_6} [normed_add_comm_group G'] [normed_space G'] [complete_space G'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) (x : G') :
(a : α) in s, ((measure_theory.condexp_ind hm μ t) x) a μ = (μ (t s)).to_real x
theorem measure_theory.condexp_ind_nonneg {α : Type u_1} {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] {E : Type u_2} [normed_lattice_add_comm_group E] [normed_space E] [ordered_smul E] (hs : measurable_set s) (hμs : μ s ) (x : E) (hx : 0 x) :

Conditional expectation of a function as a linear map from α →₁[μ] F' to itself.

Equations
theorem measure_theory.condexp_L1_clm_smul {α : Type u_1} {F' : Type u_4} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group F'] [normed_space 𝕜 F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (c : 𝕜) (f : (measure_theory.Lp F' 1 μ)) :
theorem measure_theory.set_integral_condexp_L1_clm_of_measure_ne_top {α : Type u_1} {F' : Type u_4} [normed_add_comm_group F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] {s : set α} (f : (measure_theory.Lp F' 1 μ)) (hs : measurable_set s) (hμs : μ s ) :
(x : α) in s, ((measure_theory.condexp_L1_clm hm μ) f) x μ = (x : α) in s, f x μ

Auxiliary lemma used in the proof of set_integral_condexp_L1_clm.

theorem measure_theory.set_integral_condexp_L1_clm {α : Type u_1} {F' : Type u_4} [normed_add_comm_group F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] {s : set α} (f : (measure_theory.Lp F' 1 μ)) (hs : measurable_set s) :
(x : α) in s, ((measure_theory.condexp_L1_clm hm μ) f) x μ = (x : α) in s, f x μ

The integral of the conditional expectation condexp_L1_clm over an m-measurable set is equal to the integral of f on that set. See also set_integral_condexp, the similar statement for condexp.

noncomputable def measure_theory.condexp_L1 {α : Type u_1} {F' : Type u_4} [normed_add_comm_group F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} (hm : m m0) (μ : measure_theory.measure α) [measure_theory.sigma_finite (μ.trim hm)] (f : α F') :

Conditional expectation of a function, in L1. Its value is 0 if the function is not integrable. The function-valued condexp should be used instead in most cases.

Equations
@[simp]
theorem measure_theory.condexp_L1_measure_zero {α : Type u_1} {F' : Type u_4} [normed_add_comm_group F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} {f : α F'} (hm : m m0) :
theorem measure_theory.set_integral_condexp_L1 {α : Type u_1} {F' : Type u_4} [normed_add_comm_group F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] {f : α F'} {s : set α} (hf : measure_theory.integrable f μ) (hs : measurable_set s) :
(x : α) in s, (measure_theory.condexp_L1 hm μ f) x μ = (x : α) in s, f x μ

The integral of the conditional expectation condexp_L1 over an m-measurable set is equal to the integral of f on that set. See also set_integral_condexp, the similar statement for condexp.

theorem measure_theory.condexp_L1_smul {α : Type u_1} {F' : Type u_4} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group F'] [normed_space 𝕜 F'] [normed_space F'] [complete_space F'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {hm : m m0} [measure_theory.sigma_finite (μ.trim hm)] (c : 𝕜) (f : α F') :