Prime powers and factorizations #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file deals with factorizations of prime powers.
theorem
is_prime_pow_of_min_fac_pow_factorization_eq
{n : ℕ}
(h : n.min_fac ^ ⇑(n.factorization) n.min_fac = n)
(hn : n ≠ 1) :
theorem
is_prime_pow_iff_min_fac_pow_factorization_eq
{n : ℕ}
(hn : n ≠ 1) :
is_prime_pow n ↔ n.min_fac ^ ⇑(n.factorization) n.min_fac = n
theorem
is_prime_pow_iff_factorization_eq_single
{n : ℕ} :
is_prime_pow n ↔ ∃ (p k : ℕ), 0 < k ∧ n.factorization = finsupp.single p k
theorem
is_prime_pow_iff_card_support_factorization_eq_one
{n : ℕ} :
is_prime_pow n ↔ n.factorization.support.card = 1
theorem
nat.mul_divisors_filter_prime_pow
{a b : ℕ}
(hab : a.coprime b) :
finset.filter is_prime_pow (a * b).divisors = finset.filter is_prime_pow (a.divisors ∪ b.divisors)