Tensor products of Lie modules #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Tensor products of Lie modules carry natural Lie module structures.
Tags #
lie module, tensor product, universal property
It is useful to define the bracket via this auxiliary function so that we have a type-theoretic
expression of the fact that L
acts by linear endomorphisms. It simplifies the proofs in
lie_ring_module
below.
Equations
- tensor_product.lie_module.has_bracket_aux x = linear_map.rtensor N (⇑(lie_module.to_endomorphism R L M) x) + linear_map.ltensor M (⇑(lie_module.to_endomorphism R L N) x)
The tensor product of two Lie modules is a Lie ring module.
Equations
- tensor_product.lie_module.lie_ring_module = {to_has_bracket := {bracket := λ (x : L), ⇑(tensor_product.lie_module.has_bracket_aux x)}, add_lie := _, lie_add := _, leibniz_lie := _}
The tensor product of two Lie modules is a Lie module.
Equations
- tensor_product.lie_module.lie_module = {smul_lie := _, lie_smul := _}
The universal property for tensor product of modules of a Lie algebra: the R
-linear
tensor-hom adjunction is equivariant with respect to the L
action.
Equations
- tensor_product.lie_module.lift R L M N P = {to_lie_module_hom := {to_linear_map := {to_fun := (tensor_product.lift.equiv R M N P).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := (tensor_product.lift.equiv R M N P).inv_fun, left_inv := _, right_inv := _}
A weaker form of the universal property for tensor product of modules of a Lie algebra.
Note that maps f
of type M →ₗ⁅R,L⁆ N →ₗ[R] P
are exactly those R
-bilinear maps satisfying
⁅x, f m n⁆ = f ⁅x, m⁆ n + f m ⁅x, n⁆
for all x, m, n
(see e.g, lie_module_hom.map_lie₂
).
A pair of Lie module morphisms f : M → P
and g : N → Q
, induce a Lie module morphism:
M ⊗ N → P ⊗ Q
.
Equations
- tensor_product.lie_module.map f g = {to_linear_map := {to_fun := (tensor_product.map ↑f ↑g).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
Given Lie submodules M' ⊆ M
and N' ⊆ N
, this is the natural map: M' ⊗ N' → M ⊗ N
.
Equations
The action of the Lie algebra on one of its modules, regarded as a morphism of Lie modules.
Equations
- lie_module.to_module_hom R L M = ⇑(tensor_product.lie_module.lift_lie R L L M M) {to_linear_map := {to_fun := ↑(lie_module.to_endomorphism R L M).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
A useful alternative characterisation of Lie ideal operations on Lie submodules.
Given a Lie ideal I ⊆ L
and a Lie submodule N ⊆ M
, by tensoring the inclusion maps and then
applying the action of L
on M
, we obtain morphism of Lie modules f : I ⊗ N → L ⊗ M → M
.
This lemma states that ⁅I, N⁆ = range f
.