THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4. The counit isomorphism of the Dold-Kan equivalence
The purpose of this file is to construct natural isomorphisms
N₁Γ₀ : Γ₀ ⋙ N₁ ≅ to_karoubi (chain_complex C ℕ)
and N₂Γ₂ : Γ₂ ⋙ N₂ ≅ 𝟭 (karoubi (chain_complex C ℕ))
.
(See equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
The isomorphism (Γ₀.splitting K).nondeg_complex ≅ K
for all K : chain_complex C ℕ
.
The natural isomorphism (Γ₀.splitting K).nondeg_complex ≅ K
for K : chain_complex C ℕ
.
Equations
- algebraic_topology.dold_kan.Γ₀'_comp_nondeg_complex_functor = category_theory.nat_iso.of_components algebraic_topology.dold_kan.Γ₀_nondeg_complex_iso algebraic_topology.dold_kan.Γ₀'_comp_nondeg_complex_functor._proof_1
The natural isomorphism Γ₀ ⋙ N₁ ≅ to_karoubi (chain_complex C ℕ)
.
Equations
- algebraic_topology.dold_kan.N₁Γ₀ = (((algebraic_topology.dold_kan.Γ₀'.associator (simplicial_object.split.forget C) algebraic_topology.dold_kan.N₁ ≪≫ category_theory.iso_whisker_left algebraic_topology.dold_kan.Γ₀' simplicial_object.split.to_karoubi_nondeg_complex_functor_iso_N₁.symm) ≪≫ (algebraic_topology.dold_kan.Γ₀'.associator simplicial_object.split.nondeg_complex_functor (category_theory.idempotents.to_karoubi (chain_complex C ℕ))).symm) ≪≫ category_theory.iso_whisker_right algebraic_topology.dold_kan.Γ₀'_comp_nondeg_complex_functor (category_theory.idempotents.to_karoubi (chain_complex C ℕ))) ≪≫ (category_theory.idempotents.to_karoubi (chain_complex C ℕ)).left_unitor
Compatibility isomorphism between to_karoubi _ ⋙ Γ₂ ⋙ N₂
and Γ₀ ⋙ N₁
which
are functors chain_complex C ℕ ⥤ karoubi (chain_complex C ℕ)
.
The counit isomorphism of the Dold-Kan equivalence for additive categories.
Equations
- algebraic_topology.dold_kan.N₂Γ₂ = ((category_theory.whiskering_left (chain_complex C ℕ) (category_theory.idempotents.karoubi (chain_complex C ℕ)) (category_theory.idempotents.karoubi (chain_complex C ℕ))).obj (category_theory.idempotents.to_karoubi (chain_complex C ℕ))).preimage_iso (algebraic_topology.dold_kan.N₂Γ₂_to_karoubi_iso ≪≫ algebraic_topology.dold_kan.N₁Γ₀)