The Kuratowski embedding #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Any separable metric space can be embedded isometrically in ℓ^∞(ℝ)
.
Any separable metric space can be embedded isometrically in ℓ^∞(ℝ) #
A metric space can be embedded in l^∞(ℝ)
via the distances to points in
a fixed countable set, if this set is dense. This map is given in Kuratowski_embedding
,
without density assumptions.
Equations
- Kuratowski_embedding.embedding_of_subset x a = ⟨λ (n : ℕ), has_dist.dist a (x n) - has_dist.dist (x 0) (x n), _⟩
The embedding map is always a semi-contraction.
When the reference set is dense, the embedding map is an isometry on its image.
Every separable metric space embeds isometrically in ℓ_infty_ℝ
.
The Kuratowski embedding is an isometric embedding of a separable metric space in ℓ^∞(ℝ)
.
Equations
The Kuratowski embedding is an isometry.
Version of the Kuratowski embedding for nonempty compacts
Equations
- nonempty_compacts.Kuratowski_embedding α = {to_compacts := {carrier := set.range (Kuratowski_embedding α), is_compact' := _}, nonempty' := _}