Idempotence of the Karoubi envelope #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we construct the equivalence of categories
karoubi_karoubi.equivalence C : karoubi C ≌ karoubi (karoubi C)
for any category C
.
@[simp]
@[simp]
theorem
category_theory.idempotents.karoubi_karoubi.inverse_map_f
(C : Type u_1)
[category_theory.category C]
(P Q : category_theory.idempotents.karoubi (category_theory.idempotents.karoubi C))
(f : P ⟶ Q) :
@[simp]
def
category_theory.idempotents.karoubi_karoubi.inverse
(C : Type u_1)
[category_theory.category C] :
The canonical functor karoubi (karoubi C) ⥤ karoubi C
Equations
- category_theory.idempotents.karoubi_karoubi.inverse C = {obj := λ (P : category_theory.idempotents.karoubi (category_theory.idempotents.karoubi C)), {X := P.X.X, p := P.p.f, idem := _}, map := λ (P Q : category_theory.idempotents.karoubi (category_theory.idempotents.karoubi C)) (f : P ⟶ Q), {f := f.f.f, comm := _}, map_id' := _, map_comp' := _}
Instances for category_theory.idempotents.karoubi_karoubi.inverse
@[protected, instance]
def
category_theory.idempotents.karoubi_karoubi.unit_iso
(C : Type u_1)
[category_theory.category C] :
The unit isomorphism of the equivalence
@[simp]
@[simp]
@[simp]
def
category_theory.idempotents.karoubi_karoubi.counit_iso
(C : Type u_1)
[category_theory.category C] :
The counit isomorphism of the equivalence
Equations
- category_theory.idempotents.karoubi_karoubi.counit_iso C = {hom := {app := λ (P : category_theory.idempotents.karoubi (category_theory.idempotents.karoubi C)), {f := {f := P.p.f, comm := _}, comm := _}, naturality' := _}, inv := {app := λ (P : category_theory.idempotents.karoubi (category_theory.idempotents.karoubi C)), {f := {f := P.p.f, comm := _}, comm := _}, naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
@[simp]
def
category_theory.idempotents.karoubi_karoubi.equivalence
(C : Type u_1)
[category_theory.category C] :
The equivalence karoubi C ≌ karoubi (karoubi C)
Equations
- category_theory.idempotents.karoubi_karoubi.equivalence C = {functor := category_theory.idempotents.to_karoubi (category_theory.idempotents.karoubi C) category_theory.idempotents.karoubi.category_theory.category, inverse := category_theory.idempotents.karoubi_karoubi.inverse C _inst_1, unit_iso := category_theory.idempotents.karoubi_karoubi.unit_iso C _inst_1, counit_iso := category_theory.idempotents.karoubi_karoubi.counit_iso C _inst_1, functor_unit_iso_comp' := _}
@[protected, instance]
@[protected, instance]