Semidirect product #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines semidirect products of groups, and the canonical maps in and out of the
semidirect product. The semidirect product of N
and G
given a hom φ
from
G
to the automorphism group of N
is the product of sets with the group
⟨n₁, g₁⟩ * ⟨n₂, g₂⟩ = ⟨n₁ * φ g₁ n₂, g₁ * g₂⟩
Key definitions #
There are two homs into the semidirect product inl : N →* N ⋊[φ] G
and
inr : G →* N ⋊[φ] G
, and lift
can be used to define maps N ⋊[φ] G →* H
out of the semidirect product given maps f₁ : N →* H
and f₂ : G →* H
that satisfy the
condition ∀ n g, f₁ (φ g n) = f₂ g * f₁ n * f₂ g⁻¹
Notation #
This file introduces the global notation N ⋊[φ] G
for semidirect_product N G φ
Tags #
group, semidirect product
- left : N
- right : G
The semidirect product of groups N
and G
, given a map φ
from G
to the automorphism
group of N
. It the product of sets with the group operation
⟨n₁, g₁⟩ * ⟨n₂, g₂⟩ = ⟨n₁ * φ g₁ n₂, g₁ * g₂⟩
Instances for semidirect_product
- semidirect_product.has_sizeof_inst
- semidirect_product.group
- semidirect_product.inhabited
Equations
- semidirect_product.group = {mul := λ (a b : N ⋊[φ] G), ⟨a.left * ⇑(⇑φ a.right) b.left, a.right * b.right⟩, mul_assoc := _, one := ⟨1, 1⟩, one_mul := _, mul_one := _, npow := div_inv_monoid.npow._default ⟨1, 1⟩ (λ (a b : N ⋊[φ] G), ⟨a.left * ⇑(⇑φ a.right) b.left, a.right * b.right⟩) semidirect_product.group._proof_4 semidirect_product.group._proof_5, npow_zero' := _, npow_succ' := _, inv := λ (x : N ⋊[φ] G), ⟨⇑(⇑φ (x.right)⁻¹) (x.left)⁻¹, (x.right)⁻¹⟩, div := div_inv_monoid.div._default (λ (a b : N ⋊[φ] G), ⟨a.left * ⇑(⇑φ a.right) b.left, a.right * b.right⟩) semidirect_product.group._proof_8 ⟨1, 1⟩ semidirect_product.group._proof_9 semidirect_product.group._proof_10 (div_inv_monoid.npow._default ⟨1, 1⟩ (λ (a b : N ⋊[φ] G), ⟨a.left * ⇑(⇑φ a.right) b.left, a.right * b.right⟩) semidirect_product.group._proof_4 semidirect_product.group._proof_5) semidirect_product.group._proof_11 semidirect_product.group._proof_12 (λ (x : N ⋊[φ] G), ⟨⇑(⇑φ (x.right)⁻¹) (x.left)⁻¹, (x.right)⁻¹⟩), div_eq_mul_inv := _, zpow := div_inv_monoid.zpow._default (λ (a b : N ⋊[φ] G), ⟨a.left * ⇑(⇑φ a.right) b.left, a.right * b.right⟩) semidirect_product.group._proof_14 ⟨1, 1⟩ semidirect_product.group._proof_15 semidirect_product.group._proof_16 (div_inv_monoid.npow._default ⟨1, 1⟩ (λ (a b : N ⋊[φ] G), ⟨a.left * ⇑(⇑φ a.right) b.left, a.right * b.right⟩) semidirect_product.group._proof_4 semidirect_product.group._proof_5) semidirect_product.group._proof_17 semidirect_product.group._proof_18 (λ (x : N ⋊[φ] G), ⟨⇑(⇑φ (x.right)⁻¹) (x.left)⁻¹, (x.right)⁻¹⟩), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _}
Define a group hom N ⋊[φ] G →* H
, by defining maps N →* H
and G →* H
Two maps out of the semidirect product are equal if they're equal after composition
with both inl
and inr
Define a map from N ⋊[φ] G
to N₁ ⋊[φ₁] G₁
given maps N →* N₁
and G →* G₁
that
satisfy a commutativity condition ∀ n g, f₁ (φ g n) = φ₁ (f₂ g) (f₁ n)
.