The additive circle as a normed group #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We define the normed group structure on add_circle p
, for p : ℝ
. For example if p = 1
then:
‖(x : add_circle 1)‖ = |x - round x|
for any x : ℝ
(see unit_add_circle.norm_eq
).
Main definitions: #
add_circle.norm_eq
: a characterisation of the norm onadd_circle p
TODO #
- The fact
inner_product_geometry.angle (real.cos θ) (real.sin θ) = ‖(θ : real.angle)‖
@[protected, instance]
theorem
add_circle.closed_ball_eq_univ_of_half_period_le
(p : ℝ)
(hp : p ≠ 0)
(x : add_circle p)
{ε : ℝ}
(hε : |p| / 2 ≤ ε) :
@[simp]
theorem
add_circle.coe_real_preimage_closed_ball_period_zero
(x ε : ℝ) :
coe ⁻¹' metric.closed_ball ↑x ε = metric.closed_ball x ε
theorem
add_circle.exists_norm_eq_of_fin_add_order
{p : ℝ}
[hp : fact (0 < p)]
{u : add_circle p}
(hu : is_of_fin_add_order u) :
theorem
add_circle.le_add_order_smul_norm_of_is_of_fin_add_order
{p : ℝ}
[hp : fact (0 < p)]
{u : add_circle p}
(hu : is_of_fin_add_order u)
(hu' : u ≠ 0) :
p ≤ add_order_of u • ‖u‖