mathlib3 documentation

probability.probability_mass_function.basic

Probability mass functions #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file is about probability mass functions or discrete probability measures: a function α → ℝ≥0∞ such that the values have (infinite) sum 1.

Construction of monadic pure and bind is found in probability_mass_function/monad.lean, other constructions of pmfs are found in probability_mass_function/constructions.lean.

Given p : pmf α, pmf.to_outer_measure constructs an outer_measure on α, by assigning each set the sum of the probabilities of each of its elements. Under this outer measure, every set is Carathéodory-measurable, so we can further extend this to a measure on α, see pmf.to_measure. pmf.to_measure.is_probability_measure shows this associated measure is a probability measure. Conversely, given a probability measure μ on a measurable space α with all singleton sets measurable, μ.to_pmf constructs a pmf on α, setting the probability mass of a point x to be the measure of the singleton set {x}.

Tags #

probability mass function, discrete probability measure

def pmf (α : Type u) :

A probability mass function, or discrete probability measures is a function α → ℝ≥0∞ such that the values have (infinite) sum 1.

Equations
Instances for pmf
@[protected, instance]
def pmf.fun_like {α : Type u_1} :
fun_like (pmf α) α (λ (p : α), ennreal)
Equations
@[protected, ext]
theorem pmf.ext {α : Type u_1} {p q : pmf α} (h : (x : α), p x = q x) :
p = q
theorem pmf.ext_iff {α : Type u_1} {p q : pmf α} :
p = q (x : α), p x = q x
theorem pmf.has_sum_coe_one {α : Type u_1} (p : pmf α) :
@[simp]
theorem pmf.tsum_coe {α : Type u_1} (p : pmf α) :
∑' (a : α), p a = 1
theorem pmf.tsum_coe_ne_top {α : Type u_1} (p : pmf α) :
∑' (a : α), p a
theorem pmf.tsum_coe_indicator_ne_top {α : Type u_1} (p : pmf α) (s : set α) :
∑' (a : α), s.indicator p a
@[simp]
theorem pmf.coe_ne_zero {α : Type u_1} (p : pmf α) :
p 0
def pmf.support {α : Type u_1} (p : pmf α) :
set α

The support of a pmf is the set where it is nonzero.

Equations
@[simp]
theorem pmf.mem_support_iff {α : Type u_1} (p : pmf α) (a : α) :
a p.support p a 0
@[simp]
theorem pmf.support_nonempty {α : Type u_1} (p : pmf α) :
theorem pmf.apply_eq_zero_iff {α : Type u_1} (p : pmf α) (a : α) :
p a = 0 a p.support
theorem pmf.apply_pos_iff {α : Type u_1} (p : pmf α) (a : α) :
0 < p a a p.support
theorem pmf.apply_eq_one_iff {α : Type u_1} (p : pmf α) (a : α) :
p a = 1 p.support = {a}
theorem pmf.coe_le_one {α : Type u_1} (p : pmf α) (a : α) :
p a 1
theorem pmf.apply_ne_top {α : Type u_1} (p : pmf α) (a : α) :
theorem pmf.apply_lt_top {α : Type u_1} (p : pmf α) (a : α) :
p a <
noncomputable def pmf.to_outer_measure {α : Type u_1} (p : pmf α) :

Construct an outer_measure from a pmf, by assigning measure to each set s : set α equal to the sum of p x for for each x ∈ α

Equations
theorem pmf.to_outer_measure_apply {α : Type u_1} (p : pmf α) (s : set α) :
@[simp]
theorem pmf.to_outer_measure_apply_finset {α : Type u_1} (p : pmf α) (s : finset α) :
(p.to_outer_measure) s = s.sum (λ (x : α), p x)
theorem pmf.to_outer_measure_apply_singleton {α : Type u_1} (p : pmf α) (a : α) :
@[simp]
theorem pmf.to_outer_measure_inj {α : Type u_1} {p q : pmf α} :
theorem pmf.to_outer_measure_apply_eq_zero_iff {α : Type u_1} (p : pmf α) (s : set α) :
theorem pmf.to_outer_measure_apply_eq_one_iff {α : Type u_1} (p : pmf α) (s : set α) :
@[simp]
theorem pmf.to_outer_measure_apply_inter_support {α : Type u_1} (p : pmf α) (s : set α) :
theorem pmf.to_outer_measure_mono {α : Type u_1} (p : pmf α) {s t : set α} (h : s p.support t) :

Slightly stronger than outer_measure.mono having an intersection with p.support

@[simp]
theorem pmf.to_outer_measure_apply_fintype {α : Type u_1} (p : pmf α) (s : set α) [fintype α] :
(p.to_outer_measure) s = finset.univ.sum (λ (x : α), s.indicator p x)
noncomputable def pmf.to_measure {α : Type u_1} [measurable_space α] (p : pmf α) :

Since every set is Carathéodory-measurable under pmf.to_outer_measure, we can further extend this outer_measure to a measure on α

Equations
Instances for pmf.to_measure
theorem pmf.to_measure_apply {α : Type u_1} [measurable_space α] (p : pmf α) (s : set α) (hs : measurable_set s) :
(p.to_measure) s = ∑' (x : α), s.indicator p x
theorem pmf.to_measure_apply_singleton {α : Type u_1} [measurable_space α] (p : pmf α) (a : α) (h : measurable_set {a}) :
(p.to_measure) {a} = p a
theorem pmf.to_measure_apply_eq_zero_iff {α : Type u_1} [measurable_space α] (p : pmf α) (s : set α) (hs : measurable_set s) :
theorem pmf.to_measure_apply_eq_one_iff {α : Type u_1} [measurable_space α] (p : pmf α) (s : set α) (hs : measurable_set s) :
@[simp]
theorem pmf.to_measure_apply_inter_support {α : Type u_1} [measurable_space α] (p : pmf α) (s : set α) (hs : measurable_set s) (hp : measurable_set p.support) :
theorem pmf.to_measure_mono {α : Type u_1} [measurable_space α] (p : pmf α) {s t : set α} (hs : measurable_set s) (ht : measurable_set t) (h : s p.support t) :
theorem pmf.to_measure_apply_eq_of_inter_support_eq {α : Type u_1} [measurable_space α] (p : pmf α) {s t : set α} (hs : measurable_set s) (ht : measurable_set t) (h : s p.support = t p.support) :
@[simp]
theorem pmf.to_measure_inj {α : Type u_1} [measurable_space α] [measurable_singleton_class α] {p q : pmf α} :
@[simp]
theorem pmf.to_measure_apply_finset {α : Type u_1} [measurable_space α] (p : pmf α) [measurable_singleton_class α] (s : finset α) :
(p.to_measure) s = s.sum (λ (x : α), p x)
theorem pmf.to_measure_apply_of_finite {α : Type u_1} [measurable_space α] (p : pmf α) (s : set α) [measurable_singleton_class α] (hs : s.finite) :
(p.to_measure) s = ∑' (x : α), s.indicator p x
@[simp]
theorem pmf.to_measure_apply_fintype {α : Type u_1} [measurable_space α] (p : pmf α) (s : set α) [measurable_singleton_class α] [fintype α] :
(p.to_measure) s = finset.univ.sum (λ (x : α), s.indicator p x)

Given that α is a countable, measurable space with all singleton sets measurable, we can convert any probability measure into a pmf, where the mass of a point is the measure of the singleton set under the original measure.

Equations
@[protected, instance]

The measure associated to a pmf by to_measure is a probability measure

@[simp]