mathlib documentation

algebra.ring.idempotents

Idempotents #

This file defines idempotents for an arbitary multiplication and proves some basic results, including:

Tags #

projection, idempotent

def is_idempotent_elem {M : Type u_1} [has_mul M] (p : M) :
Prop

An element p is said to be idempotent if p * p = p

Equations
theorem is_idempotent_elem.eq {M : Type u_1} [has_mul M] {p : M} (h : is_idempotent_elem p) :
p * p = p
theorem is_idempotent_elem.mul_of_commute {S : Type u_3} [semigroup S] {p q : S} (h : commute p q) (h₁ : is_idempotent_elem p) (h₂ : is_idempotent_elem q) :
theorem is_idempotent_elem.zero {M₀ : Type u_4} [mul_zero_class M₀] :
theorem is_idempotent_elem.one {M₁ : Type u_5} [mul_one_class M₁] :
theorem is_idempotent_elem.one_sub {R : Type u_6} [non_assoc_ring R] {p : R} (h : is_idempotent_elem p) :
@[simp]
theorem is_idempotent_elem.pow {N : Type u_2} [monoid N] {p : N} (n : ) (h : is_idempotent_elem p) :
theorem is_idempotent_elem.pow_succ_eq {N : Type u_2} [monoid N] {p : N} (n : ) (h : is_idempotent_elem p) :
p ^ (n + 1) = p
@[simp]
theorem is_idempotent_elem.iff_eq_one {G : Type u_7} [group G] {p : G} :
@[simp]
theorem is_idempotent_elem.iff_eq_zero_or_one {G₀ : Type u_8} [group_with_zero G₀] {p : G₀} :

Instances on subtype is_idempotent_elem #

@[protected, instance]
Equations
@[simp]
theorem is_idempotent_elem.coe_zero {M₀ : Type u_4} [mul_zero_class M₀] :
0 = 0
@[protected, instance]
Equations
@[simp]
theorem is_idempotent_elem.coe_one {M₁ : Type u_5} [mul_one_class M₁] :
1 = 1
@[protected, instance]
Equations
@[simp]
theorem is_idempotent_elem.coe_compl {R : Type u_6} [non_assoc_ring R] (p : {p // is_idempotent_elem p}) :
@[simp]
theorem is_idempotent_elem.compl_compl {R : Type u_6} [non_assoc_ring R] (p : {p // is_idempotent_elem p}) :
@[simp]
theorem is_idempotent_elem.zero_compl {R : Type u_6} [non_assoc_ring R] :
0 = 1
@[simp]
theorem is_idempotent_elem.one_compl {R : Type u_6} [non_assoc_ring R] :
1 = 0