mathlib3 documentation

category_theory.limits.exact_functor

Bundled exact functors #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We say that a functor F is left exact if it preserves finite limits, it is right exact if it preserves finite colimits, and it is exact if it is both left exact and right exact.

In this file, we define the categories of bundled left exact, right exact and exact functors.

@[nolint]
def category_theory.LeftExactFunctor (C : Type u₁) [category_theory.category C] (D : Type u₂) [category_theory.category D] :
Type (max v₁ v₂ u₁ u₂)

Bundled left-exact functors.

Equations
Instances for category_theory.LeftExactFunctor
@[nolint]
def category_theory.RightExactFunctor (C : Type u₁) [category_theory.category C] (D : Type u₂) [category_theory.category D] :
Type (max v₁ v₂ u₁ u₂)

Bundled right-exact functors.

Equations
Instances for category_theory.RightExactFunctor
@[nolint]
def category_theory.ExactFunctor (C : Type u₁) [category_theory.category C] (D : Type u₂) [category_theory.category D] :
Type (max v₁ v₂ u₁ u₂)

Bundled exact functors.

Equations
Instances for category_theory.ExactFunctor

Turn a left exact functor into an object of the category LeftExactFunctor C D.

Equations

Turn a right exact functor into an object of the category RightExactFunctor C D.

Equations

Turn an exact functor into an object of the category ExactFunctor C D.

Equations