Finite intervals of finitely supported functions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file provides the locally_finite_order
instance for ι →₀ α
when α
itself is locally
finite and calculates the cardinality of its finite intervals.
Main declarations #
finsupp.range_singleton
: Postcomposition withhas_singleton.singleton
onfinset
as afinsupp
.finsupp.range_Icc
: Postcomposition withfinset.Icc
as afinsupp
.
Both these definitions use the fact that 0 = {0}
to ensure that the resulting function is finitely
supported.
@[simp]
theorem
finsupp.range_singleton_to_fun
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
(f : ι →₀ α)
(i : ι) :
⇑(f.range_singleton) i = {⇑f i}
@[simp]
@[simp]
theorem
finsupp.range_Icc_to_fun
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
(f g : ι →₀ α)
(i : ι) :
noncomputable
def
finsupp.range_Icc
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
(f g : ι →₀ α) :
Pointwise finset.Icc
bundled as a finsupp
.
@[simp]
theorem
finsupp.range_Icc_support
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
[decidable_eq ι]
(f g : ι →₀ α) :
@[protected, instance]
noncomputable
def
finsupp.locally_finite_order
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α] :
locally_finite_order (ι →₀ α)
theorem
finsupp.Icc_eq
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α)
[decidable_eq ι] :
theorem
finsupp.card_Icc
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α)
[decidable_eq ι] :
theorem
finsupp.card_Ico
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α)
[decidable_eq ι] :
theorem
finsupp.card_Ioc
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α)
[decidable_eq ι] :
theorem
finsupp.card_Ioo
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α)
[decidable_eq ι] :
theorem
finsupp.card_uIcc
{ι : Type u_1}
{α : Type u_2}
[lattice α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α)
[decidable_eq ι] :
theorem
finsupp.card_Iic
{ι : Type u_1}
{α : Type u_2}
[canonically_ordered_add_monoid α]
[locally_finite_order α]
(f : ι →₀ α) :
(finset.Iic f).card = f.support.prod (λ (i : ι), (finset.Iic (⇑f i)).card)
theorem
finsupp.card_Iio
{ι : Type u_1}
{α : Type u_2}
[canonically_ordered_add_monoid α]
[locally_finite_order α]
(f : ι →₀ α) :
(finset.Iio f).card = f.support.prod (λ (i : ι), (finset.Iic (⇑f i)).card) - 1