Results #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
derivation.lie_algebra
: TheR
-derivations fromA
toA
form an lie algebra overR
.
Lie structures #
@[protected, instance]
def
derivation.has_bracket
{R : Type u_1}
[comm_ring R]
{A : Type u_2}
[comm_ring A]
[algebra R A] :
has_bracket (derivation R A A) (derivation R A A)
The commutator of derivations is again a derivation.
Equations
- derivation.has_bracket = {bracket := λ (D1 D2 : derivation R A A), derivation.mk' ⁅↑D1, ↑D2⁆ _}
@[protected, instance]
def
derivation.lie_ring
{R : Type u_1}
[comm_ring R]
{A : Type u_2}
[comm_ring A]
[algebra R A] :
lie_ring (derivation R A A)
Equations
- derivation.lie_ring = {to_add_comm_group := derivation.add_comm_group algebra.to_module, to_has_bracket := derivation.has_bracket _inst_3, add_lie := _, lie_add := _, lie_self := _, leibniz_lie := _}
@[protected, instance]
def
derivation.lie_algebra
{R : Type u_1}
[comm_ring R]
{A : Type u_2}
[comm_ring A]
[algebra R A] :
lie_algebra R (derivation R A A)
Equations
- derivation.lie_algebra = {to_module := {to_distrib_mul_action := module.to_distrib_mul_action derivation.module, add_smul := _, zero_smul := _}, lie_smul := _}