The category of groups with zero #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines GroupWithZero
, the category of groups with zero.
The category of groups with zero.
Equations
@[protected, instance]
@[protected, instance]
Equations
- X.group_with_zero = X.str
Construct a bundled GroupWithZero
from a group_with_zero
.
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
- GroupWithZero.category_theory.large_category = {to_category_struct := {to_quiver := {hom := λ (X Y : GroupWithZero), ↥X →*₀ ↥Y}, id := λ (X : GroupWithZero), monoid_with_zero_hom.id ↥X, comp := λ (X Y Z : GroupWithZero) (f : X ⟶ Y) (g : Y ⟶ Z), monoid_with_zero_hom.comp g f}, id_comp' := GroupWithZero.category_theory.large_category._proof_1, comp_id' := GroupWithZero.category_theory.large_category._proof_2, assoc' := GroupWithZero.category_theory.large_category._proof_3}
@[protected, instance]
Equations
- GroupWithZero.category_theory.concrete_category = category_theory.concrete_category.mk {obj := coe_sort GroupWithZero.has_coe_to_sort, map := λ (X Y : GroupWithZero), coe_fn, map_id' := GroupWithZero.category_theory.concrete_category._proof_1, map_comp' := GroupWithZero.category_theory.concrete_category._proof_2}
@[protected, instance]
Equations
- GroupWithZero.has_forget_to_Bipointed = {forget₂ := {obj := λ (X : GroupWithZero), {X := ↥X, to_prod := (0, 1)}, map := λ (X Y : GroupWithZero) (f : X ⟶ Y), {to_fun := ⇑f, map_fst := _, map_snd := _}, map_id' := GroupWithZero.has_forget_to_Bipointed._proof_3, map_comp' := GroupWithZero.has_forget_to_Bipointed._proof_4}, forget_comp := GroupWithZero.has_forget_to_Bipointed._proof_5}
@[protected, instance]
Equations
- GroupWithZero.has_forget_to_Mon = {forget₂ := {obj := λ (X : GroupWithZero), {α := ↥X, str := monoid_with_zero.to_monoid ↥X (group_with_zero.to_monoid_with_zero ↥X)}, map := λ (X Y : GroupWithZero), monoid_with_zero_hom.to_monoid_hom, map_id' := GroupWithZero.has_forget_to_Mon._proof_1, map_comp' := GroupWithZero.has_forget_to_Mon._proof_2}, forget_comp := GroupWithZero.has_forget_to_Mon._proof_3}
Constructs an isomorphism of groups with zero from a group isomorphism between them.
Equations
- GroupWithZero.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
theorem
GroupWithZero.iso.mk_inv
{α β : GroupWithZero}
(e : ↥α ≃* ↥β) :
(GroupWithZero.iso.mk e).inv = ↑(e.symm)
@[simp]
theorem
GroupWithZero.iso.mk_hom
{α β : GroupWithZero}
(e : ↥α ≃* ↥β) :
(GroupWithZero.iso.mk e).hom = ↑e