The constant functor #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
const J : C ⥤ (J ⥤ C)
is the functor that sends an object X : C
to the functor J ⥤ C
sending
every object in J
to X
, and every morphism to 𝟙 X
.
When J
is nonempty, const
is faithful.
We have (const J).obj X ⋙ F ≅ (const J).obj (F.obj X)
for any F : C ⥤ D
.
The functor sending X : C
to the constant functor J ⥤ C
sending everything to X
.
Equations
Instances for category_theory.functor.const
The contant functor Jᵒᵖ ⥤ Cᵒᵖ
sending everything to op X
is (naturally isomorphic to) the opposite of the constant functor J ⥤ C
sending everything to X
.
Equations
- category_theory.functor.const.op_obj_op X = {hom := {app := λ (j : Jᵒᵖ), 𝟙 (((category_theory.functor.const Jᵒᵖ).obj (opposite.op X)).obj j), naturality' := _}, inv := {app := λ (j : Jᵒᵖ), 𝟙 (((category_theory.functor.const J).obj X).op.obj j), naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
The contant functor Jᵒᵖ ⥤ C
sending everything to unop X
is (naturally isomorphic to) the opposite of
the constant functor J ⥤ Cᵒᵖ
sending everything to X
.
Equations
- category_theory.functor.const.op_obj_unop X = {hom := {app := λ (j : Jᵒᵖ), 𝟙 (((category_theory.functor.const Jᵒᵖ).obj (opposite.unop X)).obj j), naturality' := _}, inv := {app := λ (j : Jᵒᵖ), 𝟙 (((category_theory.functor.const J).obj X).left_op.obj j), naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
These are actually equal, of course, but not definitionally equal (the equality requires F.map (𝟙 _) = 𝟙 _). A natural isomorphism is more convenient than an equality between functors (compare id_to_iso).
Equations
- category_theory.functor.const_comp J X F = {hom := {app := λ (_x : J), 𝟙 (((category_theory.functor.const J).obj X ⋙ F).obj _x), naturality' := _}, inv := {app := λ (_x : J), 𝟙 (((category_theory.functor.const J).obj (F.obj X)).obj _x), naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
If J
is nonempty, then the constant functor over J
is faithful.