Integral over a circle in ℂ
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define ∮ z in C(c, R), f z
to be the integral $\oint_{|z-c|=|R|} f(z)\,dz$ and
prove some properties of this integral. We give definition and prove most lemmas for a function
f : ℂ → E
, where E
is a complex Banach space. For this reason,
some lemmas use, e.g., (z - c)⁻¹ • f z
instead of f z / (z - c)
.
Main definitions #
-
circle_map c R
: the exponential map $θ ↦ c + R e^{θi}$; -
circle_integrable f c R
: a functionf : ℂ → E
is integrable on the circle with centerc
and radiusR
iff ∘ circle_map c R
is integrable on[0, 2π]
; -
circle_integral f c R
: the integral $\oint_{|z-c|=|R|} f(z)\,dz$, defined as $\int_{0}^{2π}(c + Re^{θ i})' f(c+Re^{θ i})\,dθ$; -
cauchy_power_series f c R
: the power series that is equal to $\sum_{n=0}^{\infty} \oint_{|z-c|=R} \left(\frac{w-c}{z - c}\right)^n \frac{1}{z-c}f(z)\,dz$ atw - c
. The coefficients of this power series depend only onf ∘ circle_map c R
, and the power series converges tof w
iff
is differentiable on the closed ballmetric.closed_ball c R
andw
belongs to the corresponding open ball.
Main statements #
-
has_fpower_series_on_cauchy_integral
: for any circle integrable functionf
, the power seriescauchy_power_series f c R
,R > 0
, converges to the Cauchy integral(2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z
on the open discmetric.ball c R
; -
circle_integral.integral_sub_zpow_of_undef
,circle_integral.integral_sub_zpow_of_ne
, andcircle_integral.integral_sub_inv_of_mem_ball
: formulas for∮ z in C(c, R), (z - w) ^ n
,n : ℤ
. These lemmas cover the following cases:-
circle_integral.integral_sub_zpow_of_undef
,n < 0
and|w - c| = |R|
: in this case the function is not integrable, so the integral is equal to its default value (zero); -
circle_integral.integral_sub_zpow_of_ne
,n ≠ -1
: in the cases not covered by the previous lemma, we have(z - w) ^ n = ((z - w) ^ (n + 1) / (n + 1))'
, thus the integral equals zero; -
circle_integral.integral_sub_inv_of_mem_ball
,n = -1
,|w - c| < R
: in this case the integral is equal to2πi
.
The case
n = -1
,|w -c| > R
is not covered by these lemmas. While it is possible to construct an explicit primitive, it is easier to apply Cauchy theorem, so we postpone the proof till we have this theorem (see #10000). -
Notation #
∮ z in C(c, R), f z
: notation for the integral $\oint_{|z-c|=|R|} f(z)\,dz$, defined as $\int_{0}^{2π}(c + Re^{θ i})' f(c+Re^{θ i})\,dθ$.
Tags #
integral, circle, Cauchy integral
circle_map
, a parametrization of a circle #
circle_map
is 2π
-periodic.
The range of circle_map c R
is the circle with center c
and radius |R|
.
The image of (0, 2π]
under circle_map c R
is the circle with center c
and radius |R|
.
Integrability of a function on a circle #
We say that a function f : ℂ → E
is integrable on the circle with center c
and radius R
if
the function f ∘ circle_map c R
is integrable on [0, 2π]
.
Note that the actual function used in the definition of circle_integral
is
(deriv (circle_map c R) θ) • f (circle_map c R θ)
. Integrability of this function is equivalent
to integrability of f ∘ circle_map c R
whenever R ≠ 0
.
Equations
- circle_integrable f c R = interval_integrable (λ (θ : ℝ), f (circle_map c R θ)) measure_theory.measure_space.volume 0 (2 * real.pi)
The function we actually integrate over [0, 2π]
in the definition of circle_integral
is
integrable.
The function λ z, (z - w) ^ n
, n : ℤ
, is circle integrable on the circle with center c
and
radius |R|
if and only if R = 0
or 0 ≤ n
, or w
does not belong to this circle.
Definition for $\oint_{|z-c|=R} f(z)\,dz$.
Equations
- circle_integral f c R = ∫ (θ : ℝ) in 0..2 * real.pi, deriv (circle_map c R) θ • f (circle_map c R θ)
If f
is continuous on the circle |z - c| = R
, R > 0
, the ‖f z‖
is less than or equal to
C : ℝ
on this circle, and this norm is strictly less than C
at some point z
of the circle,
then ‖∮ z in C(c, R), f z‖ < 2 * π * R * C
.
If f' : ℂ → E
is a derivative of a complex differentiable function on the circle
metric.sphere c |R|
, then ∮ z in C(c, R), f' z = 0
.
If f' : ℂ → E
is a derivative of a complex differentiable function on the circle
metric.sphere c R
, then ∮ z in C(c, R), f' z = 0
.
If n < 0
and |w - c| = |R|
, then (z - w) ^ n
is not circle integrable on the circle with
center c
and radius (|R|)
, so the integral ∮ z in C(c, R), (z - w) ^ n
is equal to zero.
The power series that is equal to
$\sum_{n=0}^{\infty} \oint_{|z-c|=R} \left(\frac{w-c}{z - c}\right)^n \frac{1}{z-c}f(z)\,dz$ at
w - c
. The coefficients of this power series depend only on f ∘ circle_map c R
, and the power
series converges to f w
if f
is differentiable on the closed ball metric.closed_ball c R
and
w
belongs to the corresponding open ball. For any circle integrable function f
, this power
series converges to the Cauchy integral for f
.
For any circle integrable function f
, the power series cauchy_power_series f c R
multiplied
by 2πI
converges to the integral ∮ z in C(c, R), (z - w)⁻¹ • f z
on the open disc
metric.ball c R
.
For any circle integrable function f
, the power series cauchy_power_series f c R
, R > 0
,
converges to the Cauchy integral (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z
on the open
disc metric.ball c R
.
For any circle integrable function f
, the power series cauchy_power_series f c R
, R > 0
,
converges to the Cauchy integral (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z
on the open
disc metric.ball c R
.
For any circle integrable function f
, the power series cauchy_power_series f c R
, R > 0
,
converges to the Cauchy integral (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z
on the open
disc metric.ball c R
.