The category of bimodule objects over a pair of monoid objects. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
- X : C
- act_left : A.X ⊗ self.X ⟶ self.X
- one_act_left' : (A.one ⊗ 𝟙 self.X) ≫ self.act_left = (λ_ self.X).hom . "obviously"
- left_assoc' : (A.mul ⊗ 𝟙 self.X) ≫ self.act_left = (α_ A.X A.X self.X).hom ≫ (𝟙 A.X ⊗ self.act_left) ≫ self.act_left . "obviously"
- act_right : self.X ⊗ B.X ⟶ self.X
- act_right_one' : (𝟙 self.X ⊗ B.one) ≫ self.act_right = (ρ_ self.X).hom . "obviously"
- right_assoc' : (𝟙 self.X ⊗ B.mul) ≫ self.act_right = (α_ self.X B.X B.X).inv ≫ (self.act_right ⊗ 𝟙 B.X) ≫ self.act_right . "obviously"
- middle_assoc' : (self.act_left ⊗ 𝟙 B.X) ≫ self.act_right = (α_ A.X self.X B.X).hom ≫ (𝟙 A.X ⊗ self.act_right) ≫ self.act_left . "obviously"
A bimodule object for a pair of monoid objects, all internal to some monoidal category.
Instances for Bimod
- Bimod.has_sizeof_inst
- Bimod.category_theory.category
- Bimod.inhabited
- hom : M.X ⟶ N.X
- left_act_hom' : M.act_left ≫ self.hom = (𝟙 A.X ⊗ self.hom) ≫ N.act_left . "obviously"
- right_act_hom' : M.act_right ≫ self.hom = (self.hom ⊗ 𝟙 B.X) ≫ N.act_right . "obviously"
A morphism of bimodule objects.
Instances for Bimod.hom
- Bimod.hom.has_sizeof_inst
- Bimod.hom_inhabited
The identity morphism on a bimodule object.
Equations
- M.id' = {hom := 𝟙 M.X, left_act_hom' := _, right_act_hom' := _}
Equations
- M.hom_inhabited = {default := M.id'}
Composition of bimodule object morphisms.
Equations
- Bimod.comp f g = {hom := f.hom ≫ g.hom, left_act_hom' := _, right_act_hom' := _}
Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.
Equations
- Bimod.iso_of_iso f f_left_act_hom f_right_act_hom = {hom := {hom := f.hom, left_act_hom' := f_left_act_hom, right_act_hom' := f_right_act_hom}, inv := {hom := f.inv, left_act_hom' := _, right_act_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}
A monoid object as a bimodule over itself.
Equations
- Bimod.regular A = {X := A.X, act_left := A.mul, one_act_left' := _, left_assoc' := _, act_right := A.mul, act_right_one' := _, right_assoc' := _, middle_assoc' := _}
Equations
- Bimod.inhabited A = {default := Bimod.regular A}
The forgetful functor from bimodule objects to the ambient category.
The underlying object of the tensor product of two bimodules.
Left action for the tensor product of two bimodules.
Equations
- Bimod.tensor_Bimod.act_left P Q = (category_theory.limits.preserves_coequalizer.iso (category_theory.monoidal_category.tensor_left R.X) (P.act_right ⊗ 𝟙 Q.X) ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left))).inv ≫ category_theory.limits.colim_map (category_theory.limits.parallel_pair_hom ((category_theory.monoidal_category.tensor_left R.X).map (P.act_right ⊗ 𝟙 Q.X)) ((category_theory.monoidal_category.tensor_left R.X).map ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left))) (P.act_right ⊗ 𝟙 Q.X) ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left)) ((𝟙 R.X ⊗ (α_ P.X S.X Q.X).hom) ≫ (α_ R.X P.X (S.X ⊗ Q.X)).inv ≫ (P.act_left ⊗ 𝟙 S.X ⊗ 𝟙 Q.X) ≫ (α_ P.X S.X Q.X).inv) ((α_ R.X P.X Q.X).inv ≫ (P.act_left ⊗ 𝟙 Q.X)) _ _)
Right action for the tensor product of two bimodules.
Equations
- Bimod.tensor_Bimod.act_right P Q = (category_theory.limits.preserves_coequalizer.iso (category_theory.monoidal_category.tensor_right T.X) (P.act_right ⊗ 𝟙 Q.X) ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left))).inv ≫ category_theory.limits.colim_map (category_theory.limits.parallel_pair_hom ((category_theory.monoidal_category.tensor_right T.X).map (P.act_right ⊗ 𝟙 Q.X)) ((category_theory.monoidal_category.tensor_right T.X).map ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left))) (P.act_right ⊗ 𝟙 Q.X) ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left)) ((α_ (P.X ⊗ S.X) Q.X T.X).hom ≫ (α_ P.X S.X (Q.X ⊗ T.X)).hom ≫ (𝟙 P.X ⊗ 𝟙 S.X ⊗ Q.act_right) ≫ (α_ P.X S.X Q.X).inv) ((α_ P.X Q.X T.X).hom ≫ (𝟙 P.X ⊗ Q.act_right)) _ _)
Tensor product of two bimodule objects as a bimodule object.
Equations
- M.tensor_Bimod N = {X := Bimod.tensor_Bimod.X M N, act_left := Bimod.tensor_Bimod.act_left M N (λ (X : C), _inst_4 X), one_act_left' := _, left_assoc' := _, act_right := Bimod.tensor_Bimod.act_right M N (λ (X : C), _inst_5 X), act_right_one' := _, right_assoc' := _, middle_assoc' := _}
Tensor product of two morphisms of bimodule objects.
Equations
- Bimod.tensor_hom f g = {hom := category_theory.limits.colim_map (category_theory.limits.parallel_pair_hom (M₁.act_right ⊗ 𝟙 N₁.X) ((α_ M₁.X Y.X N₁.X).hom ≫ (𝟙 M₁.X ⊗ N₁.act_left)) (M₂.act_right ⊗ 𝟙 N₂.X) ((α_ M₂.X Y.X N₂.X).hom ≫ (𝟙 M₂.X ⊗ N₂.act_left)) ((f.hom ⊗ 𝟙 Y.X) ⊗ g.hom) (f.hom ⊗ g.hom) _ _), left_act_hom' := _, right_act_hom' := _}
An auxiliary morphism for the definition of the underlying morphism of the forward component of the associator isomorphism.
Equations
- Bimod.associator_Bimod.hom_aux P Q L = (category_theory.limits.preserves_coequalizer.iso (category_theory.monoidal_category.tensor_right L.X) (P.act_right ⊗ 𝟙 Q.X) ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left))).inv ≫ category_theory.limits.coequalizer.desc ((α_ P.X Q.X L.X).hom ≫ (𝟙 P.X ⊗ category_theory.limits.coequalizer.π (Q.act_right ⊗ 𝟙 L.X) ((α_ Q.X T.X L.X).hom ≫ (𝟙 Q.X ⊗ L.act_left))) ≫ category_theory.limits.coequalizer.π (P.act_right ⊗ 𝟙 (Q.tensor_Bimod L).X) ((α_ P.X S.X (Q.tensor_Bimod L).X).hom ≫ (𝟙 P.X ⊗ (Q.tensor_Bimod L).act_left))) _
The underlying morphism of the forward component of the associator isomorphism.
Equations
An auxiliary morphism for the definition of the underlying morphism of the inverse component of the associator isomorphism.
Equations
- Bimod.associator_Bimod.inv_aux P Q L = (category_theory.limits.preserves_coequalizer.iso (category_theory.monoidal_category.tensor_left P.X) (Q.act_right ⊗ 𝟙 L.X) ((α_ Q.X T.X L.X).hom ≫ (𝟙 Q.X ⊗ L.act_left))).inv ≫ category_theory.limits.coequalizer.desc ((α_ P.X Q.X L.X).inv ≫ (category_theory.limits.coequalizer.π (P.act_right ⊗ 𝟙 Q.X) ((α_ P.X S.X Q.X).hom ≫ (𝟙 P.X ⊗ Q.act_left)) ⊗ 𝟙 L.X) ≫ category_theory.limits.coequalizer.π ((P.tensor_Bimod Q).act_right ⊗ 𝟙 L.X) ((α_ (P.tensor_Bimod Q).X T.X L.X).hom ≫ (𝟙 (P.tensor_Bimod Q).X ⊗ L.act_left))) _
The underlying morphism of the inverse component of the associator isomorphism.
Equations
The underlying morphism of the forward component of the left unitor isomorphism.
Equations
The underlying morphism of the inverse component of the left unitor isomorphism.
The underlying morphism of the forward component of the right unitor isomorphism.
The underlying morphism of the inverse component of the right unitor isomorphism.
The associator as a bimodule isomorphism.
Equations
- L.associator_Bimod M N = Bimod.iso_of_iso {hom := Bimod.associator_Bimod.hom L M N, inv := Bimod.associator_Bimod.inv L M N, hom_inv_id' := _, inv_hom_id' := _} _ _
The left unitor as a bimodule isomorphism.
Equations
- M.left_unitor_Bimod = Bimod.iso_of_iso {hom := Bimod.left_unitor_Bimod.hom M, inv := Bimod.left_unitor_Bimod.inv M, hom_inv_id' := _, inv_hom_id' := _} _ _
The right unitor as a bimodule isomorphism.
Equations
- M.right_unitor_Bimod = Bimod.iso_of_iso {hom := Bimod.right_unitor_Bimod.hom M, inv := Bimod.right_unitor_Bimod.inv M, hom_inv_id' := _, inv_hom_id' := _} _ _
The bicategory of algebras (monoids) and bimodules, all internal to some monoidal category.
Equations
- Bimod.Mon_bicategory = {to_category_struct := {to_quiver := {hom := λ (X Y : Mon_ C), Bimod X Y}, id := λ (X : Mon_ C), Bimod.regular X, comp := λ (_x _x_1 _x_2 : Mon_ C) (M : _x ⟶ _x_1) (N : _x_1 ⟶ _x_2), Bimod.tensor_Bimod M N}, hom_category := λ (_x _x_1 : Mon_ C), Bimod.category_theory.category, whisker_left := λ (_x _x_1 _x_2 : Mon_ C) (L : _x ⟶ _x_1) (_x_3 _x_4 : _x_1 ⟶ _x_2) (f : _x_3 ⟶ _x_4), Bimod.tensor_hom (𝟙 L) f, whisker_right := λ (_x _x_1 _x_2 : Mon_ C) (_x_3 _x_4 : _x ⟶ _x_1) (f : _x_3 ⟶ _x_4) (N : _x_1 ⟶ _x_2), Bimod.tensor_hom f (𝟙 N), associator := λ (_x _x_1 _x_2 _x_3 : Mon_ C) (L : _x ⟶ _x_1) (M : _x_1 ⟶ _x_2) (N : _x_2 ⟶ _x_3), Bimod.associator_Bimod L M N, left_unitor := λ (_x _x_1 : Mon_ C) (M : _x ⟶ _x_1), Bimod.left_unitor_Bimod M, right_unitor := λ (_x _x_1 : Mon_ C) (M : _x ⟶ _x_1), Bimod.right_unitor_Bimod M, whisker_left_id' := _, whisker_left_comp' := _, id_whisker_left' := _, comp_whisker_left' := _, id_whisker_right' := _, comp_whisker_right' := _, whisker_right_id' := _, whisker_right_comp' := _, whisker_assoc' := _, whisker_exchange' := _, pentagon' := _, triangle' := _}