mathlib3 documentation

category_theory.monoidal.Bimod

The category of bimodule objects over a pair of monoid objects. #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

structure Bimod {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] (A B : Mon_ C) :
Type (max u₁ v₁)

A bimodule object for a pair of monoid objects, all internal to some monoidal category.

Instances for Bimod
@[simp]
theorem Bimod.one_act_left {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) :
(A.one 𝟙 self.X) self.act_left = (λ_ self.X).hom
@[simp]
theorem Bimod.act_right_one {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) :
(𝟙 self.X B.one) self.act_right = (ρ_ self.X).hom
@[simp]
theorem Bimod.left_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) :
(A.mul 𝟙 self.X) self.act_left = (α_ A.X A.X self.X).hom (𝟙 A.X self.act_left) self.act_left
@[simp]
theorem Bimod.right_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) :
(𝟙 self.X B.mul) self.act_right = (α_ self.X B.X B.X).inv (self.act_right 𝟙 B.X) self.act_right
@[simp]
theorem Bimod.middle_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) :
(self.act_left 𝟙 B.X) self.act_right = (α_ A.X self.X B.X).hom (𝟙 A.X self.act_right) self.act_left
@[simp]
theorem Bimod.right_assoc_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) {X' : C} (f' : self.X X') :
(𝟙 self.X B.mul) self.act_right f' = (α_ self.X B.X B.X).inv (self.act_right 𝟙 B.X) self.act_right f'
@[simp]
theorem Bimod.middle_assoc_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) {X' : C} (f' : self.X X') :
(self.act_left 𝟙 B.X) self.act_right f' = (α_ A.X self.X B.X).hom (𝟙 A.X self.act_right) self.act_left f'
@[simp]
theorem Bimod.one_act_left_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) {X' : C} (f' : self.X X') :
(A.one 𝟙 self.X) self.act_left f' = (λ_ self.X).hom f'
@[simp]
theorem Bimod.left_assoc_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) {X' : C} (f' : self.X X') :
(A.mul 𝟙 self.X) self.act_left f' = (α_ A.X A.X self.X).hom (𝟙 A.X self.act_left) self.act_left f'
@[simp]
theorem Bimod.act_right_one_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (self : Bimod A B) {X' : C} (f' : self.X X') :
(𝟙 self.X B.one) self.act_right f' = (ρ_ self.X).hom f'
theorem Bimod.hom.ext_iff {C : Type u₁} {_inst_1 : category_theory.category C} {_inst_2 : category_theory.monoidal_category C} {A B : Mon_ C} {M N : Bimod A B} (x y : M.hom N) :
x = y x.hom = y.hom
@[ext]
structure Bimod.hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (M N : Bimod A B) :
Type v₁

A morphism of bimodule objects.

Instances for Bimod.hom
theorem Bimod.hom.ext {C : Type u₁} {_inst_1 : category_theory.category C} {_inst_2 : category_theory.monoidal_category C} {A B : Mon_ C} {M N : Bimod A B} (x y : M.hom N) (h : x.hom = y.hom) :
x = y
@[simp]
theorem Bimod.hom.left_act_hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N : Bimod A B} (self : M.hom N) :
M.act_left self.hom = (𝟙 A.X self.hom) N.act_left
@[simp]
theorem Bimod.hom.right_act_hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N : Bimod A B} (self : M.hom N) :
M.act_right self.hom = (self.hom 𝟙 B.X) N.act_right
@[simp]
theorem Bimod.hom.left_act_hom_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N : Bimod A B} (self : M.hom N) {X' : C} (f' : N.X X') :
M.act_left self.hom f' = (𝟙 A.X self.hom) N.act_left f'
@[simp]
theorem Bimod.hom.right_act_hom_assoc {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N : Bimod A B} (self : M.hom N) {X' : C} (f' : N.X X') :
M.act_right self.hom f' = (self.hom 𝟙 B.X) N.act_right f'
def Bimod.id' {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (M : Bimod A B) :
M.hom M

The identity morphism on a bimodule object.

Equations
@[simp]
theorem Bimod.id'_hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (M : Bimod A B) :
M.id'.hom = 𝟙 M.X
@[protected, instance]
Equations
@[simp]
theorem Bimod.comp_hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N O : Bimod A B} (f : M.hom N) (g : N.hom O) :
def Bimod.comp {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N O : Bimod A B} (f : M.hom N) (g : N.hom O) :
M.hom O

Composition of bimodule object morphisms.

Equations
@[protected, instance]
Equations
@[simp]
theorem Bimod.id_hom' {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} (M : Bimod A B) :
(𝟙 M).hom = 𝟙 M.X
@[simp]
theorem Bimod.comp_hom' {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {A B : Mon_ C} {M N K : Bimod A B} (f : M N) (g : N K) :
(f g).hom = f.hom g.hom
def Bimod.iso_of_iso {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {X Y : Mon_ C} {P Q : Bimod X Y} (f : P.X Q.X) (f_left_act_hom : P.act_left f.hom = (𝟙 X.X f.hom) Q.act_left) (f_right_act_hom : P.act_right f.hom = (f.hom 𝟙 Y.X) Q.act_right) :
P Q

Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.

Equations
@[simp]
theorem Bimod.iso_of_iso_inv_hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {X Y : Mon_ C} {P Q : Bimod X Y} (f : P.X Q.X) (f_left_act_hom : P.act_left f.hom = (𝟙 X.X f.hom) Q.act_left) (f_right_act_hom : P.act_right f.hom = (f.hom 𝟙 Y.X) Q.act_right) :
(Bimod.iso_of_iso f f_left_act_hom f_right_act_hom).inv.hom = f.inv
@[simp]
theorem Bimod.iso_of_iso_hom_hom {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] {X Y : Mon_ C} {P Q : Bimod X Y} (f : P.X Q.X) (f_left_act_hom : P.act_left f.hom = (𝟙 X.X f.hom) Q.act_left) (f_right_act_hom : P.act_right f.hom = (f.hom 𝟙 Y.X) Q.act_right) :
(Bimod.iso_of_iso f f_left_act_hom f_right_act_hom).hom.hom = f.hom

A monoid object as a bimodule over itself.

Equations
@[protected, instance]
Equations

The forgetful functor from bimodule objects to the ambient category.

Equations

The underlying object of the tensor product of two bimodules.

Equations

Tensor product of two morphisms of bimodule objects.

Equations
theorem Bimod.tensor_comp {C : Type u₁} [category_theory.category C] [category_theory.monoidal_category C] [category_theory.limits.has_coequalizers C] [Π (X : C), category_theory.limits.preserves_colimits_of_size (category_theory.monoidal_category.tensor_left X)] [Π (X : C), category_theory.limits.preserves_colimits_of_size (category_theory.monoidal_category.tensor_right X)] {X Y Z : Mon_ C} {M₁ M₂ M₃ : Bimod X Y} {N₁ N₂ N₃ : Bimod Y Z} (f₁ : M₁ M₂) (f₂ : M₂ M₃) (g₁ : N₁ N₂) (g₂ : N₂ N₃) :
Bimod.tensor_hom (f₁ f₂) (g₁ g₂) = Bimod.tensor_hom f₁ g₁ Bimod.tensor_hom f₂ g₂

The underlying morphism of the forward component of the left unitor isomorphism.

Equations

The underlying morphism of the inverse component of the left unitor isomorphism.

Equations

The underlying morphism of the forward component of the right unitor isomorphism.

Equations

The underlying morphism of the inverse component of the right unitor isomorphism.

Equations

The bicategory of algebras (monoids) and bimodules, all internal to some monoidal category.

Equations