A collection of specific asymptotic results #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains specific lemmas about asymptotics which don't have their place in the general
theory developped in analysis.asymptotics.asymptotics
.
theorem
filter.is_bounded_under.is_o_sub_self_inv
{𝕜 : Type u_1}
{E : Type u_2}
[normed_field 𝕜]
[has_norm E]
{a : 𝕜}
{f : 𝕜 → E}
(h : filter.is_bounded_under has_le.le (nhds_within a {a}ᶜ) (has_norm.norm ∘ f)) :
If f : 𝕜 → E
is bounded in a punctured neighborhood of a
, then f(x) = o((x - a)⁻¹)
as
x → a
, x ≠ a
.
theorem
tendsto_zpow_at_top_at_top
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
{n : ℤ}
(hn : 0 < n) :
filter.tendsto (λ (x : 𝕜), x ^ n) filter.at_top filter.at_top
theorem
tendsto_pow_div_pow_at_top_at_top
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
{p q : ℕ}
(hpq : q < p) :
filter.tendsto (λ (x : 𝕜), x ^ p / x ^ q) filter.at_top filter.at_top
theorem
tendsto_pow_div_pow_at_top_zero
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
[topological_space 𝕜]
[order_topology 𝕜]
{p q : ℕ}
(hpq : p < q) :
filter.tendsto (λ (x : 𝕜), x ^ p / x ^ q) filter.at_top (nhds 0)
theorem
asymptotics.is_o_pow_pow_at_top_of_lt
{𝕜 : Type u_1}
[normed_linear_ordered_field 𝕜]
[order_topology 𝕜]
{p q : ℕ}
(hpq : p < q) :
(λ (x : 𝕜), x ^ p) =o[filter.at_top] λ (x : 𝕜), x ^ q
theorem
asymptotics.is_O.trans_tendsto_norm_at_top
{𝕜 : Type u_1}
[normed_linear_ordered_field 𝕜]
{α : Type u_2}
{u v : α → 𝕜}
{l : filter α}
(huv : u =O[l] v)
(hu : filter.tendsto (λ (x : α), ‖u x‖) l filter.at_top) :
filter.tendsto (λ (x : α), ‖v x‖) l filter.at_top
theorem
asymptotics.is_o.sum_range
{α : Type u_1}
[normed_add_comm_group α]
{f : ℕ → α}
{g : ℕ → ℝ}
(h : f =o[filter.at_top] g)
(hg : 0 ≤ g)
(h'g : filter.tendsto (λ (n : ℕ), (finset.range n).sum (λ (i : ℕ), g i)) filter.at_top filter.at_top) :
(λ (n : ℕ), (finset.range n).sum (λ (i : ℕ), f i)) =o[filter.at_top] λ (n : ℕ), (finset.range n).sum (λ (i : ℕ), g i)
theorem
asymptotics.is_o_sum_range_of_tendsto_zero
{α : Type u_1}
[normed_add_comm_group α]
{f : ℕ → α}
(h : filter.tendsto f filter.at_top (nhds 0)) :
(λ (n : ℕ), (finset.range n).sum (λ (i : ℕ), f i)) =o[filter.at_top] λ (n : ℕ), ↑n
theorem
filter.tendsto.cesaro_smul
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{u : ℕ → E}
{l : E}
(h : filter.tendsto u filter.at_top (nhds l)) :
filter.tendsto (λ (n : ℕ), (↑n)⁻¹ • (finset.range n).sum (λ (i : ℕ), u i)) filter.at_top (nhds l)
The Cesaro average of a converging sequence converges to the same limit.
theorem
filter.tendsto.cesaro
{u : ℕ → ℝ}
{l : ℝ}
(h : filter.tendsto u filter.at_top (nhds l)) :
filter.tendsto (λ (n : ℕ), (↑n)⁻¹ * (finset.range n).sum (λ (i : ℕ), u i)) filter.at_top (nhds l)
The Cesaro average of a converging sequence converges to the same limit.