The category of complete lattices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines CompleteLat
, the category of complete lattices.
The category of complete lattices.
Equations
@[protected, instance]
@[protected, instance]
Equations
- X.complete_lattice = X.str
Construct a bundled CompleteLat
from a complete_lattice
.
Equations
@[simp]
@[protected, instance]
Equations
@[protected, instance]
Equations
- CompleteLat.complete_lattice_hom.category_theory.bundled_hom = {to_fun := λ (_x _x_1 : Type u_1) (_x_2 : complete_lattice _x) (_x_3 : complete_lattice _x_1), coe_fn, id := complete_lattice_hom.id, comp := complete_lattice_hom.comp, hom_ext := CompleteLat.complete_lattice_hom.category_theory.bundled_hom._proof_1, id_to_fun := CompleteLat.complete_lattice_hom.category_theory.bundled_hom._proof_2, comp_to_fun := CompleteLat.complete_lattice_hom.category_theory.bundled_hom._proof_3}
@[protected, instance]
Equations
- CompleteLat.has_forget_to_BddLat = {forget₂ := {obj := λ (X : CompleteLat), BddLat.of ↥X, map := λ (X Y : CompleteLat), complete_lattice_hom.to_bounded_lattice_hom, map_id' := CompleteLat.has_forget_to_BddLat._proof_1, map_comp' := CompleteLat.has_forget_to_BddLat._proof_2}, forget_comp := CompleteLat.has_forget_to_BddLat._proof_3}
@[simp]
theorem
CompleteLat.iso.mk_inv
{α β : CompleteLat}
(e : ↥α ≃o ↥β) :
(CompleteLat.iso.mk e).inv = ↑(e.symm)
Constructs an isomorphism of complete lattices from an order isomorphism between them.
Equations
- CompleteLat.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
order_dual
as a functor.
Equations
- CompleteLat.dual = {obj := λ (X : CompleteLat), CompleteLat.of (↥X)ᵒᵈ, map := λ (X Y : CompleteLat), ⇑complete_lattice_hom.dual, map_id' := CompleteLat.dual._proof_1, map_comp' := CompleteLat.dual._proof_2}
@[simp]
@[simp]
@[simp]
@[simp]
The equivalence between CompleteLat
and itself induced by order_dual
both ways.
Equations
- CompleteLat.dual_equiv = category_theory.equivalence.mk CompleteLat.dual CompleteLat.dual (category_theory.nat_iso.of_components (λ (X : CompleteLat), CompleteLat.iso.mk (order_iso.dual_dual ↥X)) CompleteLat.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : CompleteLat), CompleteLat.iso.mk (order_iso.dual_dual ↥X)) CompleteLat.dual_equiv._proof_2)