The category of commutative monoids in a braided monoidal category. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
- to_Mon_ : Mon_ C
- mul_comm' : (β_ self.to_Mon_.X self.to_Mon_.X).hom ≫ self.to_Mon_.mul = self.to_Mon_.mul . "obviously"
A commutative monoid object internal to a monoidal category.
Instances for CommMon_
The trivial commutative monoid object. We later show this is initial in CommMon_ C
.
Equations
- CommMon_.trivial C = {to_Mon_ := {X := (Mon_.trivial C).X, one := (Mon_.trivial C).one, mul := (Mon_.trivial C).mul, one_mul' := _, mul_one' := _, mul_assoc' := _}, mul_comm' := _}
Equations
- CommMon_.inhabited C = {default := CommMon_.trivial C _inst_3}
The forgetful functor from commutative monoid objects to monoid objects.
Instances for CommMon_.forget₂_Mon_
Equations
A lax braided functor takes commutative monoid objects to commutative monoid objects.
That is, a lax braided functor F : C ⥤ D
induces a functor CommMon_ C ⥤ CommMon_ D
.
Equations
- F.map_CommMon = {obj := λ (A : CommMon_ C), {to_Mon_ := {X := (F.to_lax_monoidal_functor.map_Mon.obj A.to_Mon_).X, one := (F.to_lax_monoidal_functor.map_Mon.obj A.to_Mon_).one, mul := (F.to_lax_monoidal_functor.map_Mon.obj A.to_Mon_).mul, one_mul' := _, mul_one' := _, mul_assoc' := _}, mul_comm' := _}, map := λ (A B : CommMon_ C) (f : A ⟶ B), F.to_lax_monoidal_functor.map_Mon.map f, map_id' := _, map_comp' := _}
map_CommMon
is functorial in the lax braided functor.
Equations
- category_theory.lax_braided_functor.map_CommMon_functor C D = {obj := category_theory.lax_braided_functor.map_CommMon _inst_6, map := λ (F G : category_theory.lax_braided_functor C D) (α : F ⟶ G), {app := λ (A : CommMon_ C), {hom := α.to_nat_trans.app A.to_Mon_.X, one_hom' := _, mul_hom' := _}, naturality' := _}, map_id' := _, map_comp' := _}
Implementation of CommMon_.equiv_lax_braided_functor_punit
.
Equations
- CommMon_.equiv_lax_braided_functor_punit.lax_braided_to_CommMon C = {obj := λ (F : category_theory.lax_braided_functor (category_theory.discrete punit) C), F.map_CommMon.obj (CommMon_.trivial (category_theory.discrete punit)), map := λ (F G : category_theory.lax_braided_functor (category_theory.discrete punit) C) (α : F ⟶ G), ((category_theory.lax_braided_functor.map_CommMon_functor (category_theory.discrete punit) C).map α).app (CommMon_.trivial (category_theory.discrete punit)), map_id' := _, map_comp' := _}
Implementation of CommMon_.equiv_lax_braided_functor_punit
.
Equations
- CommMon_.equiv_lax_braided_functor_punit.CommMon_to_lax_braided C = {obj := λ (A : CommMon_ C), {to_lax_monoidal_functor := {to_functor := {obj := λ (_x : category_theory.discrete punit), A.to_Mon_.X, map := λ (_x _x_1 : category_theory.discrete punit) (_x : _x ⟶ _x_1), 𝟙 A.to_Mon_.X, map_id' := _, map_comp' := _}, ε := A.to_Mon_.one, μ := λ (_x _x : category_theory.discrete punit), A.to_Mon_.mul, μ_natural' := _, associativity' := _, left_unitality' := _, right_unitality' := _}, braided' := _}, map := λ (A B : CommMon_ C) (f : A ⟶ B), {to_nat_trans := {app := λ (_x : category_theory.discrete punit), f.hom, naturality' := _}, unit' := _, tensor' := _}, map_id' := _, map_comp' := _}
Implementation of CommMon_.equiv_lax_braided_functor_punit
.
Equations
- CommMon_.equiv_lax_braided_functor_punit.unit_iso C = category_theory.nat_iso.of_components (λ (F : category_theory.lax_braided_functor (category_theory.discrete punit) C), category_theory.lax_braided_functor.mk_iso (category_theory.monoidal_nat_iso.of_components (λ (_x : category_theory.discrete punit), F.to_lax_monoidal_functor.to_functor.map_iso (category_theory.eq_to_iso _)) _ _ _)) _
Implementation of CommMon_.equiv_lax_braided_functor_punit
.
Equations
- CommMon_.equiv_lax_braided_functor_punit.counit_iso C = category_theory.nat_iso.of_components (λ (F : CommMon_ C), {hom := {hom := 𝟙 ((CommMon_.equiv_lax_braided_functor_punit.CommMon_to_lax_braided C ⋙ CommMon_.equiv_lax_braided_functor_punit.lax_braided_to_CommMon C).obj F).to_Mon_.X, one_hom' := _, mul_hom' := _}, inv := {hom := 𝟙 ((𝟭 (CommMon_ C)).obj F).to_Mon_.X, one_hom' := _, mul_hom' := _}, hom_inv_id' := _, inv_hom_id' := _}) _
Commutative monoid objects in C
are "just" braided lax monoidal functors from the trivial
braided monoidal category to C
.
Equations
- CommMon_.equiv_lax_braided_functor_punit C = {functor := CommMon_.equiv_lax_braided_functor_punit.lax_braided_to_CommMon C _inst_3, inverse := CommMon_.equiv_lax_braided_functor_punit.CommMon_to_lax_braided C _inst_3, unit_iso := CommMon_.equiv_lax_braided_functor_punit.unit_iso C _inst_3, counit_iso := CommMon_.equiv_lax_braided_functor_punit.counit_iso C _inst_3, functor_unit_iso_comp' := _}