Successors and predecessors of naturals #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we show that ℕ
is both an archimedean succ_order
and an archimedean pred_order
.
@[protected, instance, reducible]
Equations
- nat.succ_order = {succ := nat.succ, le_succ := nat.succ_order._proof_1, max_of_succ_le := nat.succ_order._proof_2, succ_le_of_lt := nat.succ_order._proof_3, le_of_lt_succ := nat.succ_order._proof_4}
@[protected, instance, reducible]
Equations
- nat.pred_order = {pred := nat.pred, pred_le := nat.pred_le, min_of_le_pred := nat.pred_order._proof_1, le_pred_of_lt := nat.pred_order._proof_2, le_of_pred_lt := nat.pred_order._proof_3}
Covering relation #
Alias of the reverse direction of fin.coe_covby_iff
.