Nonempty finite linear orders #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines NonemptyFinLinOrd
, the category of nonempty finite linear orders with monotone maps.
This is the index category for simplicial objects.
Note: NonemptyFinLinOrd
is not a subcategory of FinBddDistLat
because its morphisms do not
preserve ⊥
and ⊤
.
- to_fintype : fintype α
- to_linear_order : linear_order α
- nonempty : nonempty α . "apply_instance"
A typeclass for nonempty finite linear orders.
Instances of this typeclass
Instances of other typeclasses for nonempty_fin_lin_ord
- nonempty_fin_lin_ord.has_sizeof_inst
Equations
Equations
Equations
- fin.nonempty_fin_lin_ord n = {to_fintype := fin.fintype (n + 1), to_linear_order := fin.linear_order (n + 1), nonempty := _}
Equations
- ulift.nonempty_fin_lin_ord α = {to_fintype := ulift.fintype α nonempty_fin_lin_ord.to_fintype, to_linear_order := {le := linear_order.le (linear_order.lift' ⇑equiv.ulift _), lt := linear_order.lt (linear_order.lift' ⇑equiv.ulift _), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (linear_order.lift' ⇑equiv.ulift _), decidable_eq := linear_order.decidable_eq (linear_order.lift' ⇑equiv.ulift _), decidable_lt := linear_order.decidable_lt (linear_order.lift' ⇑equiv.ulift _), max := linear_order.max (linear_order.lift' ⇑equiv.ulift _), max_def := _, min := linear_order.min (linear_order.lift' ⇑equiv.ulift _), min_def := _}, nonempty := _}
Equations
- order_dual.nonempty_fin_lin_ord α = {to_fintype := {elems := fintype.elems αᵒᵈ (order_dual.fintype α), complete := _}, to_linear_order := order_dual.linear_order α nonempty_fin_lin_ord.to_linear_order, nonempty := _}
The category of nonempty finite linear orders.
Instances for NonemptyFinLinOrd
- NonemptyFinLinOrd.large_category
- NonemptyFinLinOrd.concrete_category
- NonemptyFinLinOrd.has_coe_to_sort
- NonemptyFinLinOrd.inhabited
- NonemptyFinLinOrd.has_forget_to_LinOrd
- NonemptyFinLinOrd.has_forget_to_FinPartOrd
- NonemptyFinLinOrd.category_theory.split_epi_category
- NonemptyFinLinOrd.category_theory.limits.has_strong_epi_mono_factorisations
Equations
- NonemptyFinLinOrd.nonempty_fin_lin_ord.to_linear_order.category_theory.bundled_hom.parent_projection = category_theory.bundled_hom.parent_projection.mk
Construct a bundled NonemptyFinLinOrd
from the underlying type and typeclass.
Equations
Equations
- α.nonempty_fin_lin_ord = α.str
Equations
- NonemptyFinLinOrd.has_forget_to_FinPartOrd = {forget₂ := {obj := λ (X : NonemptyFinLinOrd), FinPartOrd.of ↥X, map := λ (X Y : NonemptyFinLinOrd), id, map_id' := NonemptyFinLinOrd.has_forget_to_FinPartOrd._proof_1, map_comp' := NonemptyFinLinOrd.has_forget_to_FinPartOrd._proof_2}, forget_comp := NonemptyFinLinOrd.has_forget_to_FinPartOrd._proof_3}
Constructs an equivalence between nonempty finite linear orders from an order isomorphism between them.
Equations
- NonemptyFinLinOrd.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
order_dual
as a functor.
Equations
- NonemptyFinLinOrd.dual = {obj := λ (X : NonemptyFinLinOrd), NonemptyFinLinOrd.of (↥X)ᵒᵈ, map := λ (X Y : NonemptyFinLinOrd), ⇑order_hom.dual, map_id' := NonemptyFinLinOrd.dual._proof_1, map_comp' := NonemptyFinLinOrd.dual._proof_2}
The equivalence between NonemptyFinLinOrd
and itself induced by order_dual
both ways.
Equations
- NonemptyFinLinOrd.dual_equiv = category_theory.equivalence.mk NonemptyFinLinOrd.dual NonemptyFinLinOrd.dual (category_theory.nat_iso.of_components (λ (X : NonemptyFinLinOrd), NonemptyFinLinOrd.iso.mk (order_iso.dual_dual ↥X)) NonemptyFinLinOrd.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : NonemptyFinLinOrd), NonemptyFinLinOrd.iso.mk (order_iso.dual_dual ↥X)) NonemptyFinLinOrd.dual_equiv._proof_2)
Equations
- NonemptyFinLinOrd.category_theory.split_epi_category = {is_split_epi_of_epi := NonemptyFinLinOrd.category_theory.split_epi_category._proof_1}
The forgetful functor NonemptyFinLinOrd ⥤ FinPartOrd
and order_dual
commute.
Equations
- NonemptyFinLinOrd_dual_comp_forget_to_FinPartOrd = {hom := {app := λ (X : NonemptyFinLinOrd), order_hom.id, naturality' := NonemptyFinLinOrd_dual_comp_forget_to_FinPartOrd._proof_1}, inv := {app := λ (X : NonemptyFinLinOrd), order_hom.id, naturality' := NonemptyFinLinOrd_dual_comp_forget_to_FinPartOrd._proof_2}, hom_inv_id' := NonemptyFinLinOrd_dual_comp_forget_to_FinPartOrd._proof_3, inv_hom_id' := NonemptyFinLinOrd_dual_comp_forget_to_FinPartOrd._proof_4}