Nakayama's lemma #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains some alternative statements of Nakayama's Lemma as found in Stacks: Nakayama's Lemma.
Main statements #
-
submodule.eq_smul_of_le_smul_of_le_jacobson
- A version of (2) in Stacks: Nakayama's Lemma., generalising to the Jacobson of any ideal. -
submodule.eq_bot_of_le_smul_of_le_jacobson_bot
- Statement (2) in Stacks: Nakayama's Lemma. -
submodule.smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson
- A version of (4) in Stacks: Nakayama's Lemma., generalising to the Jacobson of any ideal. -
submodule.smul_sup_eq_of_le_smul_of_le_jacobson_bot
- Statement (4) in Stacks: Nakayama's Lemma.
Note that a version of Statement (1) in
Stacks: Nakayama's Lemma can be found in
ring_theory/noetherian
under the name
submodule.exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
References #
Tags #
Nakayama, Jacobson
Nakayama's Lemma* - A slightly more general version of (2) in
Stacks 00DV.
See also eq_bot_of_le_smul_of_le_jacobson_bot
for the special case when J = ⊥
.
Nakayama's Lemma* - Statement (2) in
Stacks 00DV.
See also eq_smul_of_le_smul_of_le_jacobson
for a generalisation
to the jacobson
of any ideal
Nakayama's Lemma* - A slightly more general version of (4) in
Stacks 00DV.
See also smul_sup_eq_of_le_smul_of_le_jacobson_bot
for the special case when J = ⊥
.
Nakayama's Lemma* - Statement (4) in
Stacks 00DV.
See also smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson
for a generalisation
to the jacobson
of any ideal